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Dieser Beitrag basiert auf einer Publikation von Georg Hoffmann und Frank Klawonn mit einem
Gastkommentar von Jakob Adler, erschienen in Trillium Diagnostik 2022, Band 20, 102—-105. Wir
liefern hier die Daten und Funktionen, die es Interessierten erméglichen sollen, die dort
beschriebenen Berechnungen praktisch nachzuvollziehen. Alle grau hinterlegten
Programmbeispiele konnen direkt nach R bzw. RStudio kopiert und ausgefiihrt werden. So
erzeugt man beispielsweise mit dem folgenden Testcode 1000 normalverteilte Alouminwerte mit
einem Referenzintervall (abgekirzt RI) von etwa 35.6 bis 46.1 g/l.

hist (rnorm(n = 1000, mean = 40.85, sd = 2.68), main = "Albumin", xlab = "g/1l", ylab
= "Anzahl")

abline(v = c(35.6, 46.1), 1lty = 2) #Referenzgrenzen einzeichnen


https://www.trillium.de/
https://www.helmholtz-hzi.de/en/research/research-topics/bacterial-and-viral-pathogens/biostatistics/our-research/
https://www.trillium.de/zeitschriften/trillium-diagnostik/ausgaben-2022/td-heft-2/2022-immunologie/default-167018def5/ueberpruefung-von-referenzintervallen-schnelle-orientierung.html
https://www.trillium.de/zeitschriften/trillium-diagnostik/ausgaben-2022/td-heft-2/2022-immunologie/default-167018def5/ueberpruefung-von-referenzintervallen-schnelle-orientierung/gastkommentar-eine-mammutaufgabe.html
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Fir eine Einfihrung in die 6ffentlich verfigbare Programmiersprache R sei auf ein Skript der
Trillium Akademie verwiesen, das ebenso wie der vorliegende Beitrag nach kostenloser
Registrierung unter www.trillium.de/services/software.html zur Verfligung steht.

Kapitel 1

Hintergrund und Aufgabenstellung

Nach nationalen und internationalen Vorschriften sind medizinische Laboratorien verpflichtet, alle
Referenzintervalle, die sie aus Produktblattern oder anderen externen Quellen lbernommen
haben, anhand eigener Messungen zu tiberprifen (Sack U & Ozciirimez M 2019, Hoffmann
2020). Definitionsgemal umfassen RI die zentralen 95 % von Laborwerten, die an gesunden
Referenzpersonen gemessen wurden. Die leitliniengerechte Identifizierung und Rekrutierung
solcher Personen ist allerdings in der Praxis aus Zeit- und Kostengriinden sowie ethischen
Bedenken so gut wie nicht realisierbar (Ozarda Y et al. 2021).

Deshalb werden heute vorwiegend indirekte Verfahren eingesetzt, die es erlauben, aus
Routinewerten die ,vermutlich normalen® Werte zu identifizieren und deren nicht direkt ablesbare
Referenzgrenzen lUber mathematische Parameter zu schatzen (Jones G et al. 2018). Dies ist
organisatorisch deutlich einfacher als das direkte Verfahren, erfordert dafiir aber statistischen
Mehraufwand, der oft mit langen Rechenzeiten und hohen Anforderungen an die Fallzahlen
verbunden ist.

In diesem Beitrag geht es um eine Routineaufgabe der Laboratoriumsdiagnostik, die hundert- bis
tausendfach pro Labor anfallt, ndmlich die Prifung, ob vorgegebene Referenzgrenzen zu den
lokalen Gegebenheiten hinsichtlich Analytik und Praanalytik passen oder nicht. Hierfur sollte nach
Moglichkeit kein so grof3er Aufwand betrieben werden wie fir die De-novo-Bestimmung von
Referenzintervallen, um zeitliche und personelle Ressourcen zu schonen.

Wir stellen im Folgenden einfache Verfahren vor, die es erlauben, mit geringem mathematischem
Aufwand und moderaten Fallzahlen zu Uberprifen, welche Referenzintervalle im


https://www.trillium.de/mytrillium/registrieren.html
https://www.trillium.de/mytrillium/registrieren.html
https://www.trillium.de/services/software.html
https://www.trillium.de/zeitschriften/trillium-diagnostik/ausgaben-2019/td-heft-32019/schwerpunkt/referenzbereiche-im-medizinischen-labor.html
https://www.trillium.de/zeitschriften/trillium-diagnostik/ausgaben-2020/td-heft-12020/informationstechnologie/referenzintervall-ueberpruefung-ein-konzept-wird-erwachsen.html
https://www.trillium.de/zeitschriften/trillium-diagnostik/ausgaben-2020/td-heft-12020/informationstechnologie/referenzintervall-ueberpruefung-ein-konzept-wird-erwachsen.html
https://pubmed.ncbi.nlm.nih.gov/34081933/
https://pubmed.ncbi.nlm.nih.gov/29672266/

Laborinformationssystem akzeptiert werden kdnnen und welche einer Korrektur bedurfen. Zur
einfachen Beurteilung der Ergebnisse haben wir ein Ampelfarbenschema entwickelt, das auf
einen Blick anzeigt, bei welchen Analyten der hochste Handlungsbedarf besteht.

Kapitel 2

Material und Methodik

Daten

Die verwendeten Echtdaten stammen aus einem offentlich zuganglichen Data Repository fur
Projekte zum maschinellen Lernen (Hoffmann G et al. 2018, Oladimeji O 2021). Sie kbnnen mit R
unmittelbar eingelesen und analysiert werden. Mit folgendem Code werden die ersten Zeilen des
Datensatzes dargestellt.

x <- read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/00571/hcvd
at0.csv")

head (x) #zeigt die ersten Zeilen des Datensatzes an

## X Category Age Sex ALB ALP ALT AST BIL CHE CHOL CREA GGT PROT

## 1 1 0=Blood Donor 32 m 38.5 52.5 7.7 22.1 7.5 6.93 3.23 106 12.1 69.0

## 2 2 0=Blood Donor 32 m 38.5 70.3 18.0 24.7 3.9 11.17 4.80 74 15.6 76.5

## 3 3 0=Blood Donor 32 m 46.9 74.7 36.2 52.6 6.1 8.84 5.20 86 33.2 79.3

## 4 4 0=Blood Donor 32 m 43.2 52.0 30.6 22.6 18.9 7.33 4.74 80 33.8 75.7

## 5 5 0=Blood Donor 32 m 39.2 74.1 32.6 24.8 9.6 9.15 4.32 76 29.9 68.7

## 6 6 0=Blood Donor 32 m 41.6 43.3 18.5 19.7 12.3 9.92 6.05 111 91.0 74.0

Der Datensatz besteht aus 615 Zeilen mit quantitativen Laborwerten von 238 Frauen und 377
Mannern im Alter von 19 bis 77 Jahren. Davon sind insgesamt 540 Personen Blutspender, die
Ubrigen 75 weisen unterschiedliche Schweregrade einer Hepatitis C auf. Bei allen Personen
wurden zehn Biomarker fur die Diagnostik einer Leberschadigung bestimmt (ALB, ALP, ALT,
AST, BIL, CHE, CHOL, CREA, GGT, PROT). Die Angaben fiir Geschlecht und
Krankheitskategorie wandelt man mit folgendem Code in sog. “Faktoren” (nominale Variablen)
um.

x$Sex <- as.factor (x$Sex)

x$Category <- as.factor (x$Category)

summary (x[, c(2, 4)1)
## Category Sex
## 0=Blood Donor :533 £:238

## Os=suspect Blood Donor: 7 m:377

## 1l=Hepatitis : 24
## 2=Fibrosis : 21
## 3=Cirrhosis : 30

Als zweites Input-File bendétigen wir die Grenzwerte des Herstellers, die tberprift werden sollen.
Beispielhaft erzeugen wir eine Matrix mit den Angaben fir Albumin (ALB) in g/l und Alanin-
Aminotransferase (ALT) in U/l


https://archive.ics.uci.edu/ml/index.php
https://jlpm.amegroups.com/article/view/4401/5425
http://ijmi.ir/index.php/IJMI/article/view/274

ref <- matrix(c(35.6, 46.1, 35.6, 46.1, 10, 35, 10, 50), nrow = 4)

rownames (ref) <- c("Frauen UG", "Frauen OG", "Manner UG", "Manner OG")
colnames (ref) <- c("ALB", "ALT")

ref

#4 ALB ALT

## Frauen UG 35.6 10
## Frauen OG 46.1 35
## Manner UG 35.6 10

## Manner 0OG 46.1 50

Die Abkirzungen UG und OG stehen hier fur Untergrenze und Obergrenze.

Zusatzpakete
Fur die Umsetzung der nachfolgend beschriebenen Algorithmen werden zwei zusatzliche R-
Pakete bendtigt:

e truncnorm von O Mersmann et al. 2018 fur trunkierte Normalverteilungen
e zlogvon S Gibb 2021 fur die Berechnung von zlog-Werten.

Die Installation erfolgt mit den Funktionen install.packages(truncnorm) und install.packages(zlog).
Diese Packages muss man bei jedem Programmestart aktivieren.

library (truncnorm)

library(zlog)

Kapitel 3

Datenaufbereitung und Bewertung nach Geschlecht und
Alter

Im ersten Schritt erzeugen wir den gewiinschten Ausschnitt aus den Daten (ALB und ALT) und
entfernen alle Zeilen mit fehlenden Werten (NA).

xxX <- na.omit(x[, c(2 : 5, 7)]) #extrahiert die Spalten 2 bis 4 plus die Werte fir
ALB und ALT

Zur groben Prifung auf Geschlechtsunterschiede werden die Messwerte fiir Frauen und Manner
getrennt als Boxplots angezeigt. Um die Bilder fir ALB und ALT nebeneinander zu platzieren,
verwenden wir die Funktion par (Parametereinstellungen fur Grafiken) mit dem Argument mfrow
(multiple figures arranged by rows).


https://cran.r-project.org/web/packages/truncnorm/index.html
https://cran.r-project.org/package=zlog

par (mfrow = c(1l, 2)) #Bildanordnung in 1 Zeile und 2 Spalten
boxplot (xx$ALB ~ xx$Sex,

main = "ALB", xlab = "Geschlecht", ylab = "g/1",

col = c("pink", "lightblue"), notch = TRUE)
grid()

boxplot (xx$ALT ~ xx$Sex,

main = "ALT", xlab = "Geschlecht", ylab = "U/1",
col = c("pink", "lightblue"), notch = TRUE)
grid()
ALB ALT
o o] o]
o | (=]
O —
™
e - S
o — o]
o © «
© 9] o] o o
-9 Q7
- O —L— ! —
= 0 X = 0]
i (=]
o | > g o
A 0
o _|
< —— i o o] B8
! ! o ¢
o 5 : T
Q ;
: : o | 8 i
6] Te] s i
1
ga N C g E::::é:::sé 1
Q o - —r —_
[ [ [ [
f m f m
Geschlecht Geschlecht

Man kann aufgrund der Lage der Kasten (boxes) und Kerben (notches) auch ohne aufwendige
Statistik bereits vorhersagen, dass sich die Grenzwerte fir Frauen und Ménner unterscheiden
werden, obwohl der Hersteller beim Albumin nicht nach dem Geschlecht differenziert. Fir die
weitere Auswertung werden wir die Datensatze folglich nach dem Geschlecht trennen.

x.f <- subset (xx, xx$Sex == "f")

x.m <- subset (xx, xx$Sex == "m")

Zur Datenaufbereitung gehort auch stets eine Uberpriifung der Altersabhangigkeit. Fir
ausgefullte Punkte verwenden wir den Grafikparameter pch (plotting character) mit dem Wert 20.



par (mfrow = c(2, 2)) #Bildanordnung in 2 Zeilen und 2 Spalten)

plot (x.f$Age, x.fS$SALB, main = "ALB (f)", xlab = "Alter (Jahre)", ylab = "g/1",
ylim = c(min (xx$ALB), max (xxS$SALB)), col = "red", pch = 20)
grid()
abline(h = ref[l : 2, 1], lty = 2) #Grenzwerte ALB fiir Frauen als waagrechte gestri

chelte Linien

plot (x.m$Age, x.m$ALB, main = "ALB (m)", xlab = "Alter (Jahre)", ylab = "g/1",
ylim = c(min (xx$ALB), max (xx$ALB)), col = "blue", pch = 20)

grid()

abline(h = ref[3 : 4, 1], 1lty = 2) #Grenzwerte ALB fliir Manner

plot (x.f$Age, x.fS$ALT, main = "ALT (f)", xlab = "Alter (Jahre)", ylab = "U/1",
ylim = c(min (xx$ALT), max (xxS$SALT)), col = "red", pch = 20)

grid()

abline(h = ref[l : 2, 2], lty = 2) #Grenzwerte ALT fir Frauen

plot (x.m$Age, x.mSALT, main = "ALT (m)", xlab = "Alter (Jahre)", ylab

"U/l",
ylim = c(min (xxX$ALT), max (xxS$SALT)), col = "blue", pch = 20)
grid()

abline(h = ref[3 : 4, 2], lty = 2) #Grenzwerte ALT fir Manner
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Auf den Bildern sind keine auffalligen Trends zu erkennen. Deshalb werden wir die Werte flr die
Referenzintervallpriifung ohne Alterspartitionierung verwenden. Ganz tberschlagig erkennen wir
an dieser grafischen Darstellung, dass die Hauptmenge der Punkte innerhalb der jeweiligen



Grenzwerte des Herstellers liegt. Fiir eine genaue Uberpriifung der Referenzintervalle reicht
diese grobe Darstellung allerdings nicht aus.

Kapitel 4

Priifung der Referenzintervalle anhand von trunkierten
zlog-Werten

Die Idee hinter dem nun ausfuhrlich vorgestellten zweistufigen Algorithmus ist einfach:

e Durch die zlog-Normalisierung werden die Echtdaten so transformiert, dass ihr
Referenzintervall unabhéngig von Methode, Einheit etc. einheitlich von -1.96 bis +1.96
reicht (siehe Hoffmann G et al. J Lab Med 2017).

e Der klassische Boxplot wird so modifiziert, dass die Enden der Whiskers moglichst exakt
die zentralen 95 % der (nicht-pathologischen) Hauptfraktion aller Werte markieren (siehe
Klawonn F & Hoffmann G in Advances in Intelligent Systems and Computing, Springer
Nature 2022). Diese entsprechen definitionsgemal den zlog-Werten innerhalb des
geschatzten Referenzintervalls.

Man muss dann nur noch prifen, wie weit die so erhaltenen Referenzgrenzen von den
erwarteten Grenzwerten -1.96 und +1.96 abweichen, um eine Aussage machen zu kénnen, ob
die vorgegebenen Grenzen zu den Echtdaten passen oder nicht.

Berechnung von zlog-Werten

Zur Berechnung von zlog-Werten verwenden wir die zlog-Funktion aus dem zlog-Package (eine
Beschreibung erhalt man wie tblich mit ?zlog, wenn das Package korrekt installiert und aktiviert
wurde). Die Funktion erwartet als Parameter einen Absolutwert (z. B. 40) und die zugehdrigen
Referenzgrenzen (z. B. 35.6 und 46.1), und gibt den transformierten Wert zurlick.

zlog (40, c(35.6, 46.1))

## [1] -0.1926064

Das Ergebnis von etwa -0.2 liegt nahe bei 0 und besagt, dass der Wert mitten im standardisierten
Referenzintervall von -1.96 bis +1.96 liegt.

Hier ist ein Codebeispiel fiir die Berechnung und grafische Darstellung der zlog-Werte von
Albumin als Dichtekurve und Boxplot:

par (mfrow = c (1, 2))

zlog.alb <- zlog(xxS$ALB, ref[l : 2, 1])

plot (density(zlog.alb), main = "Dichtekurve", xlab = "zlog ALB", ylab = "")
grid()

abline(v = c(-1.96, 1.96), lty = 2)

boxplot (zlog.alb, main = "Boxplot", ylab = "zlog ALB", xlab = "")

grid()

abline(h = c(-1.96, 1.96), lty = 2)


https://www.researchgate.net/publication/313582123_Der_zlog-Wert_als_Basis_fur_die_Standardisierung_von_Laborwerten
https://www.springer.com/series/11156
https://www.springer.com/series/11156
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Die Hauptmenge der zlog-Werte streut erwartungsgemaf um 0 und befindet sich zwischen den
standardisierten Referenzgrenzen von -1.96 und +1.96. Man sieht der dezentralen Lage der
Dichtekurve bzw. der Box aber bereits mit freiem Auge an, dass das vorgegebene
Referenzintervall (gestrichelte Linien) nicht gut zu den Messwerten passt.

Hinweis: Dichtekurve und Boxplot wurden flir ALB geschlechtsunabhéangig erstellt, da die
vorgegebenen Grenzwerte fir Manner und Frauen gleich sind. Bei unterschiedlichen
Grenzwerten erfolgt die Berechnung und grafische Darstellung geschlechtsspezifisch.
Beispielsweise wirde die zlog-Normalisierung fir die ALT-Grenzwerte bei Mannern wie folgt
berechnet:

zlog.alt.m <- zlog(x.m$ALT, ref[3 : 4, 2])

Trunkierung der Werte mit dem iBoxplot95-Verfahren

Beim klassischen Boxplot reichen die Enden der Whiskers im obigen Beispiel (rechte Abbildung)
weit Uber die gestrichelten Referenzgrenzen hinaus. Das liegt vor allem an den pathologischen
Werten im Datensatz. Das Ziel der Modifikation iBoxplot95 ist es nun, die Whiskers so weit zu
kirzen, dass sie im Idelfall mit den Referenzgrenzen der unauffalligen Werte Ubereinstimmen.
Ausgehend von der Uberlegung, dass die zentralen 50 % der Daten (also die Werte innerhalb der
Box des Boxplots) so gut wie keine pathologischen Werte enthalten sollten, versuchen wir also,
mit einem statistischen Verfahren von den zentralen 50 % auf die zentralen 95 % zu schlieRen.

Wir wahlen als Startpunkt der beiden Whiskers den Median (Q2) und berechnen einen Faktor gf
(“Quantilfaktor”) aus der jeweils kleineren Halfte der Box (unter der Annahme, dass diese Seite
der Verteilung durch die pathologischen Werte weniger beeinflusst wird). Bei einer idealen
Normalverteilung sind die beiden Halften gleich breit und der Quantilfaktor lasst sich leicht aus
den Quantilen 0.25 und 0.025 bzw. 0.75 und 0.975 der Standardnormalverteilung berechnen.



gnorm(p = 0.025) / gnorm(p 0.25)

## [1]1 2.905847

gnorm(p = 0.975) / gnorm(p = 0.75)

## [1] 2.905847

Fur den Trunkierungs-Algorithmus gibt es bislang noch kein Package. Die Funktion iBoxplot95()
ist jedoch relativ leicht selbst zu programmieren. Zur besseren Verstandlichkeit gliedern wir den
Algorithmus in zwei Funktionen. Die erste namens truncate.x fihrt die eigentliche Trunkierung
durch, indem sie von den Quartilen des Datensatzes mithilfe des Quantilfaktors gf auf die
theoretischen Referenzgrenzen einer Standardnormalverteilung schlief3t.

truncate.x <- function(x, gf = 2.906) {
#gf = quantile factor to derive gnorm(0.025) from gnorm(0.25)
Q <- quantile(x, c(0.25, 0.5, 0.75))
varl <- Q[2] - QI[1]
var2 <- Q[3] - Q[2]
var <- min(varl, var2)
lim <= c(Q[2] - gf * var, Q[2] + gf * var)

return (subset (x, x >= 1lim[l] & x <= 1im[2]))

Als Beispiel ergeben sich fur Albumin folgende statistischen Kennzahlen:

trunc.alb <- truncate.x(zlog.alb)
summary (trunc.alb)
#4 Min. 1lst Qu. Median Mean 3rd Qu. Max.

## -2.7918 -0.4604 0.6194 0.5836 1.6945 3.8446

Diese Zahlen bestatigen den visuellen Eindruck der obigen Abbildungen quantitativ: Der Median
liegt nicht bei 0, sondern ist mit etwa 0.6 nach rechts verschoben, und die Extremwerte liegen
jenseits der erwarteten Referenzgrenzen von -1.96 bzw. +1.96. Das letztere Phdnomen kann
man allerdings noch nicht sicher einem zu breiten Referenzintervall anlasten, denn es ist
durchaus mdoglich, dass dieser erste Trunkierungsschritt noch nicht alle pathologischen Werte
entfernt hat.

Deshalb ruft die zweite Funktion namens iBoxplot95 diesen Algorithmus iterativ so oft auf, bis
aulRerhalb der so berechneten Whiskers keine Werte mehr gefunden werden.



iBoxplot95 <- function(x, lognorm = FALSE) {
if (lognorm) {xx <- log(xx)} else {xx <- x}
#setzt die Startparameter
n0 <- 1
nl <- 0
gf <- 2.906
i<-1
#trunkiert xx solange, bis keine AusreiBer mehr gefunden werden
while (n0O > nl) {
n0 <- length (xx)
xx <- truncate.x(xx, gf = gf)
nl <- length (xx)
gf <- 3.083
}
if (lognorm) {xx <- exp(xx)}

return (xXx)

Eine Besonderheit dieser iterativen Funktion besteht darin, dass der Quantilfaktor gf nach dem
ersten Durchgang von 2.906 auf 3.083 erhoht wird. Diese geringflgige Verlangerung der
Whiskers tragt dem Umstand Rechnung, dass die Trunkierung ab dem zweiten Durchgang aus
einer bereits trunkierten Wertemenge erfolgt. Bei der Berechnung von gf verwenden wir deshalb
fur das 0.25-Quantil die Funktion gtruncnorm anstelle von gnorm, um von der trunkierten auf die
untrunktierte Verteilung zu schlielen (aus der wir dann das 0.025- und das 0.975-Quantil
schatzen).

gnorm(p = 0.025) / gtruncnorm(p = 0.25, a = -1.96, b = 1.96)

## [1] 3.083352

Mit der so angepassten Funktion iBoxplot95 erhalt man fir Albumin folgende Kennzahlen:

trunc.alb <- iBoxplot95(zlog.alb)
summary (trunc.alb)
#4 Min. 1lst Qu. Median Mean 3rd Qu. Max.

## -2.3921 -0.3834 0.6194 0.6012 1.6945 3.6399

Wie man sieht, sind die Grenzen durch den wiederholten Aufruf von truncate.x etwas enger
geworden, sprechen jedoch weiterhin daflr, dass das vom Hersteller vorgegebene
Referenzintervall zu weit ist.



Kapitel 5

Grafische Ausgabe des Ergebnisses

Dieses Ergebnis wollen wir nun so visualisieren, dass man das Referenzintervall auch ohne
tiefergehendes Statistikwissen intuitiv beurteilen kann. Dazu erstellen wir zwei Grafiken, die die
tatsachliche Verteilung der trunkierten zlog-Werte mit der theoretisch zu erwartenden Verteilung

vergleicht.

par (mfrow = c (1, 2))
hist (trunc.alb, freq = FALSE, xlim = c (-4, 4),
col = "white", border = "gray",

main = "empirische Verteilung", xlab = "zlog", ylab = "Dichte")

lines (density(trunc.alb), 1lty = 2)

grid()
abline (v = 0)
curve (dtruncnorm(x, a = -1.96, b = 1.96), from = -4, to = 4, lty = 2,
main = "theoretische Verteilung", xlab = "zlog", ylab = "Dichte")
grid()
abline (v = 0)
empirische Verteilung theoretische Verteilung
T}
N
o TN < _| N
I‘ \‘ o J‘ ‘\
1 ‘\ ‘l 1
o ) i
N~ IJ ]‘ lf ]\
o 1 ! I 1
! H 0 | Jl \
/ '. S N
Te] 1l 1 I 1
— ]’ 1 1J ]\
Q o ! ‘, ()] ' 1
-— IJ \ E J 1
{S 4 | [3] o | |
a o { 1 A o ) ,
- s 1 } ]\
o i | ; '
r i} 1 1
1] 1 i 1
JIJ' |‘ — JJ l\
8 | ]l ]i O ] 'l 1\
o ! 1 ! A
;‘ \\ : :
! 1 | '
;’ ‘\ ] i
s J . N o | ...
y o
© I I | | I | I
4 2 0 2 4 4 2 0 2 4
zlog Zlog

Man sieht links das Histogramm der realen zlog-Werte nach Entfernung der Ausreil3er; die
gestrichelte Linie zeigt die “empirische Dichtekurve”, die sich sehr einfach mit density(trunc.alb)
berechnen lasst. Rechts sehen wir zum Vergleich, wie die Dichtekurve aussehen misste, wenn



die zlog-Werte in etwa standardnormalverteilt waren (Mittelwert 0, Standardabweichung 1), und
wenn das vorgegebene Referenzintervall exakt den Quantilen 0.025 und 0.975 entsprache.

Der Unterschied ist augenfallig: Die empirische Dichtekurve erscheint andeutungsweise
zweigipflig (bimodal), wobei der zweite Peak nach rechts verschoben ist. Wenn wir uns noch
einmal die Boxplots fur Albumin im Kapitel 3 ansehen, so bestatigt dieses Bild unseren Verdacht,
dass ein gemeinsames Referenzintervall fir beide Geschlechter die Realitéat nicht gut
widerspiegelt, weil die Werte der Manner etwas hoher als diejenigen der Frauen sind.

Kapitel 6

Ampelfarben als Interpretationshilfe

Nun wollen wir die Abweichungen zwischen Soll und Ist klinisch bewerten und farbig
kennzeichnen. Angelehnt an eine einfache Daumenregel von IFCC und EFLM (Henny J et

al. 2016) zur RI-Uberprifung wird eine Abweichung von * 10 % des normierten Referenzbereichs
als tolerierbar angesehen. Ausgedriickt in zlog-Werten entspricht dies £+ 0.392, weil das
standardisierte Referenzintervall ja unabhangig vom Analyten immer 2 * 1.96 = 3.92 betréagt.

Die nachfolgende Funktion zlog.density kombiniert die obigen beiden Dichtekurven und
kennzeichnet Abweichungen zwischen empirischen und theoretischen Referenzgrenzen mit
Ampelfarben: Griin werden Abweichungen von weniger als £ 10 % des Referenzbereichs
gekennzeichnet, rot markieren wir mehr als doppelt so grof3e Abweichungen und gelb den
Bereich dazwischen.


https://pubmed.ncbi.nlm.nih.gov/27748267/
https://pubmed.ncbi.nlm.nih.gov/27748267/

zlog.density <- function(x, limits, main = ""){

# x = Vektor positiver Zahlen, limits = Vektor der Liange 2 mit den vorgegebenen R
eferenzgrenzen

zlog.x <- zlog(x, limits) # berechnet zlog-Werte

trunc.x <- iBoxplot95(zlog.x) # filtert die zentralen 95 % der "wahrscheinlich no
rmalen" Werte

# zeichnet eine kombinierte Grafik aus empirischer und theoretischer Verteilung
d <- density(trunc.x)
y.max <- max(max(dSy), 0.45) # obere Begrenzung der y-Achse

hist (trunc.x, freq = FALSE,

x1lim = c(-4, 4), ylim = c(0, y.max),
col = "white", border = "gray",
main = main, xlab = "", ylab = "")

lines(d, 1lty = 2)

curve (dtruncnorm(x, a = -1.96, b = 1.96), from = -4, to = 4, add = TRUE)

grid()

abline (v = 0)

# zeichnet farbige Toleranzbereiche mit Ampelfarben (tf.col = traffic light color
s) ein

tf.col <- c¢(rgb(0.1, 1, 0.1, 0.5), rgb(, 1, 0.1, 0.5), rgb(l, 0.1, 0.1, 0.5))
verif.col <- c(tf.col[1l], tf.col[l]) # Voreinstellung zweimal Grin

col.lim <- c(-2.744, -2.352, -1.568, -1.176, 1.176, 1.568, 2.352, 2.744)

if (min (trunc.x) < col.lim[2] | min(trunc.x) > col.lim[3]) {verif.col[l] <- tf.col]
21}

if (min (trunc.x) < col.lim[l] | min(trunc.x) > col.lim[4]) {verif.col[l] <- tf.col]
311}

if (max (trunc.x) < col.lim[6] | max(trunc.x) > col.lim[7]) {verif.col[2] <- tf.col]
2]}

if (max (trunc.x) < col.lim[5] | max(trunc.x) > col.lim[8]) {verif.col[2] <- tf.col]
31}

rect(col.lim[2], 0, col.lim[3], y.max, col = verif.col[l], border = "gray", lty =
3)

rect(col.lim[6], O, col.lim[7], y.max, col = verif.col[2], border = "gray", lty =
3)

abline (v = c(min(trunc.x), max(trunc.x)), lty = 2)

return (c (low.lim = round(min (trunc.x), 2), upp.lim = round (max(trunc.x), 2)))

Mithilfe dieser Funktion erstellen wir nun das farbig markierte Dichtediagramm fiir Albumin.



zlog.density (xx$SALB, ref[l : 2, 1], main = "Albumin")

Albumin
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## low.lim upp.lim
## -2.39 3.64

Aus dem Bild und den darunter abgedruckten zlog-Werten ergeben sich folgende zwei
Schlussfolgerungen:

e Die empirische Untergrenze von -2.39 liegt knapp unterhalb der Toleranzgrenze von -
2.35. Der linke Toleranzbereich ist deshalb gelb gefarbt.

e Die empirische Obergrenze von 3.64 liegt weit oberhalb der Toleranzgrenze von +2.35.
Der rechte Toleranzbereich ist deshalb rot gefarbt.

Mit wenigen Zeilen Code lasst sich diese Grafik fur alle zu prifenden Referenzintervalle erstellen.
Die Funktionsergebnisse werden in eine Tabelle geschrieben und ausgegeben.



zlog.results <- matrix (NA, nrow = 4, ncol = 2)
rownames (zlog.results) <- rownames (ref)
colnames (zlog.results) <- c("ALB Schatzung", "ALT Schatzung")

par (mfrow = c(2, 2), mar=c(3, 4.1, 3, 2.1)) # vier Grafiken mit verkleinerten Rande
rn (margins)

zlog.results[1l : 2, 1] <- zlog.density(x.f$ALB, ref[l : 2, 1], main = "ALB (Frauen)
")
zlog.results[3 : 4, 1] <- zlog.density(x.m$ALB, ref[3 : 4, 1], main = "ALB (Manner)
")
zlog.results[l : 2, 2] <- zlog.density(x.f$ALT, ref[l : 2, 2], main = "ALT (Frauen)
")
zlog.results[3 : 4, 2] <- zlog.density(x.m$ALT, ref[3 : 4, 2], main = "ALT (M&nner)
")
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zlog.results

#4# ALB Schatzung ALT Schétzung
## Frauen UG -2.26 -1.72
## Frauen OG 1.93 1.34
## Manner UG -1.66 -1.62

## Manner OG 3.73 2.53



Auch diese Abbildungen sind sehr leicht interpretierbar:

e Von den insgesamt acht Uberprlften Referenzgrenzen liegen funf im “griinen Bereich”,
sprich innerhalb des Toleranzbereichs von 1.96 + 0.392 (Obergrenze) bzw. -1.96 + 0.392
(Untergrenze).

e Die zwei Obergrenzen der ALT werden gelb markiert, sollten also einer Inspektion (zum
Beispiel durch Vergleich mit der Literatur) unterzogen werden.

e Die geschlechtsiibergreifend angegebene Obergrenze fur Albumin ist nur fir Frauen
geeignet. Fir Manner wurde sie rot markiert; hier sollte vermutlich ein hoherer Grenzwert
eingesetzt werden.

Ein Blick in die Literatur zeigt, dass die Grenzwerte fur Aloumin in der Tat in Abhangigkeit von
Alter und Geschlecht sowie dem eingesetzten Analyseverfahren variieren konnen und deshalb
individuell angepasst werden mussen (Weaving G et al. Ann Clin Biochem 2016, Jassam N et
al. Ann Clin Biochem 2020)

Kapitel 7

Schatzung absoluter Zielwerte

Das hier vorgestellte Screeningverfahren ist kein Ersatz fir eine sorgfaltige Bestimmung von
Referenzintervallen nach den Leitlinien und Empfehlungen internationaler und nationaler
Fachgesellschaften. Dennoch ist aus den Abbildungen natirlich die Richtung ablesbar, in der der
korrekte Grenzwert zu suchen ist.

Mithilfe der Funktion izlog() (inverse zlog) lassen sich zlog-Werte bei Kenntnis des zugrunde
liegenden Referenzintervalls in Absolutwerte umrechnen. Das nachfolgende Codebeispiel
ermittelt absolute Zielwerte aus der Tabelle zlog.results.

absolute.results <- zlog.results
absolute.results[l : 4, 1] <- izlog(zlog.results[l : 4, 1], ref[l : 2, 1])
absolute.results[l : 2, 2] <- izlog(zlog.results[l : 2, 2], ref[l : 2, 2])

absolute.results[3 : 4, 2] <- izlog(zlog.results[3 : 4, 2], ref[3 : 4, 2])

cbind (ref, round(absolute.results, 1))

#4# ALB ALT ALB Schatzung ALT Schatzung
## Frauen UG 35.6 10 34.9 10.8
## Frauen OG 46.1 35 46.0 28.7
## Manner UG 35.6 10 36.3 11.5
## Manner OG 46.1 50 51.8 63.2

Die Spalten 1 und 2 dieser Tabelle enthaltenen die vorgegebenen Referenzgrenzen, die Spalten
3 und 4 die aus den zlog-Werten geschatzten Zielwerte. Auch hier sieht man, dass vor allem die
Obergrenze fur das Albumin der Manner erheblich von der Vorgabe des Herstellers abweicht
(51.8 vs. 46.1 g/l); der Unterschied von 5.7 g/l entspricht immerhin mehr als 50 % des
Referenzbereichs (46.1 - 35.6 = 10.5 g/l). Ob die Abweichungen der ALT-Obergrenzen um etwa
6 bzw. 11 U/l (rund 25 % des Referenzbereichs) klinisch relevant sind, sollte das jeweilige Labor
individuell entscheiden.

Mit der izlog-Funktion lassen sich auch die Toleranzgrenzen aus der “IFCC-Daumenregel” in
Absolutwerten angeben.


https://pubmed.ncbi.nlm.nih.gov/26071488/
https://pubmed.ncbi.nlm.nih.gov/32646226/
https://pubmed.ncbi.nlm.nih.gov/32646226/

tol.abs <- matrix (0, nrow = 3, ncol = 06)
rownames (tol.abs) <- c("ALB", "ALT(f)", "ALT (m)")
colnames (tol.abs) <- c("UG", "von", "bis", "OG", "von", "bis")
tol.abs[, 1] <- c(ref[l, 1 : 2], ref[3, 2]) #Ubertragung der Untergrenzen aus ref
tol.abs[, 4] <- c(ref[2, 1 : 2], ref[4, 2]) #Ubertragung der Obergrenzen aus ref
tol.zlog <- c¢(-2.352, -1.568, 1.568, 2.352) #-1.96 = 0.392 und 1.96 = 0.392
for (i in 1 : 3){
lim <- tol.abs[i, c(l, 4)] # Referenzgrenzen fir die Funktion izlog

tol.abs[i, 2] <- izlog(tol.zlog[l], limits = lim)

tol.abs[i, 3] <- izlog(tol.zlog[2], limits = 1lim)
tol.abs[i, 5] <- izlog(tol.zlog[3], limits = 1lim)
tol.abs[i, 6] <- izlog(tol.zlog[4], limits = lim)

}

round (tol.abs, 1)

## UG von Dbis OG von bis

## ALB 35.6 34.7 36.5 46.1 44.9 47.3

## ALT(f) 10.0 8.8 11.3 35.0 30.9 39.7

## ALT(m) 10.0 8.5 11.7 50.0 42.6 58.7

Wie man sieht, bewirkt die in der zlog-Normalisierung enthaltene Logarithmierung, dass der
Toleranzbereich fiir die untere Referenzgrenze enger als derjenige fiir die Obergrenze ist. Dies
entspricht einer Forderung der einschlagigen DGKL-Arbeitsgruppe (Haeckel R et al. CCLM
2017). Grafisch lassen sich die vorgegebenen Referenzintervalle und Toleranzbereiche zum
Beispiel mit Linien und Késtchen folgendermal3en darstellen:

plot (0, type = "n", xlim = c(0, 60), ylim = c(0, 4), yaxt = "n",
main = "Referenzintervalle und Toleranzbereiche", xlab = "Einheit (g/l1 bzw. U/
)", ylab = "")
grid()
for (i in 1 : 3){

text(x = 0, vy =4 - i, rownames (tol.abs)[i], pos = 4)
lines(x = tol.abs[i, c(1, 4)], vy = rep(4 - i, 2), 1lwd = 5, col = 1 + 2)
rect (tol.abs[i, 2], 3.8 - i, tol.abs[i, 3], 4.2 - i)

rect (tol.abs[i, 5], 3.8 - i, tol.abs[i, 6], 4.2 - i)


https://pubmed.ncbi.nlm.nih.gov/28151722/
https://pubmed.ncbi.nlm.nih.gov/28151722/
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Das hier vorgeschlagene empirische Prifverfahren legt beim Albumin recht strenge Mal3stébe an
die Referenzintervall-Uberpriifung an, wahrend er bei der Obergrenze der ALT “toleranter” ist.
Dies ist klinisch plausibel, weil der Organismus den Albuminspiegel deutlich enger reguliert als
denjenigen der Transaminasen, sodass sich Abweichungen im ersten Fall auch klinisch starker
auswirken als im zweiten Fall.

Kapitel 8

Diskussion und Ausblick

Unsere Studie schliel3t eine Licke im Repertoire der Methoden fir die RI-Priifung. Bislang gibt es
nur ein einziges leitliniengerechtes Verfahren, das ohne grofRen organisatorischen und
rechnerischen Aufwand feststellt, ob ein vorgegebenes Referenzintervall zu den eigenen
Messwerten passt oder nicht: Man fihrt hierfiir Messungen an zwanzig “offensichtlich gesunden”
Versuchspersonen durch und akzeptiert die Grenzen, wenn nicht mehr als zwei Messwerte
aul3erhalb liegen (Horowitz G et al. CLSI/IFCC Document EP28-A3c, 2010).

Dieses Verfahren wurde vielfach als unzureichend kritisiert, insbesondere weil

e ein nvon 20 kaum reprasentativ fur das Einsenderkollektiv sein kann.

e die erlaubte Zahl von zwei AusreiRern mehr als die erwarteten 5 % falsch positiver
Resultate (also Zurlickweisungen von theoretisch korrekten Referenzgrenzen) bewirkt.

e zu weite Referenzintervalle mit diesem Verfahren grundséatzlich nicht erkannt werden
kdnnen, weil in diesem Fall zu wenige Werte auRerhalb liegen.

Dazu kommt, dass der Rekrutierungsaufwand weiterhin relativ hoch ist, da die 20 gesunden
Versuchspersonen ja pro Subkollektiv (Frauen, Manner, Kinder usw.) anfallen. Deshalb wurden in
jungerer Zeit viele indirekte Verfahren publiziert, die diese Probleme beheben sollen. Sie sind
allerdings in der Regel zeit- und rechenaufwendig und benétigen sehr hohe Fallzahlen, die in
kleineren Laboratorien nicht zur Verfiigung stehen.


https://clsi.org/media/1421/ep28a3c_sample.pdf

Unser Ziel war es, ein indirektes Verfahren vorzuschlagen, das in Millisekunden mit
Uberschaubarer Fallzahl zu einer Aussage fuihrt, ob die vorgegebenen Referenzgrenzen
akzeptiert werden kdnnen oder nicht. Im Gegensatz zur derzeit Gblichen Vorgehensweise
bestimmen wir kein Referenzintervall de novo, sondern verwenden — &hnlich wie die o.g.
CLSI/IFCC-Leitlinie — die vorgegebenen Grenzwerte. Aber anstelle der pauschalen Aussage,
dass nicht mehr als 10 % der gemessenen Werte aufRerhalb liegen dirfen, analysieren wir die
Verteilung der Werte zwischen den Grenzen und kdnnen auf diese Weise wesentlich detailliertere
Aussagen machen als das Leitlinienverfahren. Durch den Einsatz von zlog-Werten anstelle von
Absolutwerten erreichen wir zudem eine standardisierte Auswertung, die fur alle Analyten
unabhéangig von Verfahren, Einheit usw. einheitlich beurteilt werden kann.

Wir demonstrieren in dieser Arbeit, dass man solch detaillierte Aussagen mit einer ganzen Reihe
visueller Verfahren untermauern kann. Neben Boxplots und Scatterplots eignen sich inbesondere
Histogramme und Dichtekurven dazu, recht genau anzugeben, ob beispielsweise die Lage oder
die Streuung der gemessenen Werte von der Erwartung abweicht. Weitere Darstellungsformen
wie z. B. Quantil-Quantil-Plots von zlog-Werten sind aktuell in der Erprobung, um die Aussagen
noch praziser und intuitiver zu machen.

Wir arbeiten daran, die vorgeschlagenen Kennzahlen und Grafiken an einer Vielzahl von
Analyten und Kollektiven zu testen und laden unsere Kolleginnen und Kollegen aus Labormedizin
und Statistik dazu ein, sich an diesen Studien mit ihren eigenen Daten zu beteiligen.
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