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Dieser Beitrag basiert auf einer Publikation von Georg Hoffmann und Frank Klawonn mit einem 
Gastkommentar von Jakob Adler, erschienen in Trillium Diagnostik 2022, Band 20, 102–105. Wir 
liefern hier die Daten und Funktionen, die es Interessierten ermöglichen sollen, die dort 
beschriebenen Berechnungen praktisch nachzuvollziehen. Alle grau hinterlegten 
Programmbeispiele können direkt nach R bzw. RStudio kopiert und ausgeführt werden. So 
erzeugt man beispielsweise mit dem folgenden Testcode 1000 normalverteilte Albuminwerte mit 
einem Referenzintervall (abgekürzt RI) von etwa 35.6 bis 46.1 g/l. 

hist(rnorm(n = 1000, mean = 40.85, sd = 2.68), main = "Albumin", xlab = "g/l", ylab 

= "Anzahl") 

abline(v = c(35.6, 46.1), lty = 2) #Referenzgrenzen einzeichnen 

https://www.trillium.de/
https://www.helmholtz-hzi.de/en/research/research-topics/bacterial-and-viral-pathogens/biostatistics/our-research/
https://www.trillium.de/zeitschriften/trillium-diagnostik/ausgaben-2022/td-heft-2/2022-immunologie/default-167018def5/ueberpruefung-von-referenzintervallen-schnelle-orientierung.html
https://www.trillium.de/zeitschriften/trillium-diagnostik/ausgaben-2022/td-heft-2/2022-immunologie/default-167018def5/ueberpruefung-von-referenzintervallen-schnelle-orientierung/gastkommentar-eine-mammutaufgabe.html


 

Für eine Einführung in die öffentlich verfügbare Programmiersprache R sei auf ein Skript der 
Trillium Akademie verwiesen, das ebenso wie der vorliegende Beitrag nach kostenloser 
Registrierung unter www.trillium.de/services/software.html zur Verfügung steht. 

 

Kapitel 1 

Hintergrund und Aufgabenstellung 
Nach nationalen und internationalen Vorschriften sind medizinische Laboratorien verpflichtet, alle 
Referenzintervalle, die sie aus Produktblättern oder anderen externen Quellen übernommen 
haben, anhand eigener Messungen zu überprüfen (Sack U & Özçürümez M 2019, Hoffmann 
2020). Definitionsgemäß umfassen RI die zentralen 95 % von Laborwerten, die an gesunden 
Referenzpersonen gemessen wurden. Die leitliniengerechte Identifizierung und Rekrutierung 
solcher Personen ist allerdings in der Praxis aus Zeit- und Kostengründen sowie ethischen 
Bedenken so gut wie nicht realisierbar (Ozarda Y et al. 2021). 

Deshalb werden heute vorwiegend indirekte Verfahren eingesetzt, die es erlauben, aus 
Routinewerten die „vermutlich normalen“ Werte zu identifizieren und deren nicht direkt ablesbare 
Referenzgrenzen über mathematische Parameter zu schätzen (Jones G et al. 2018). Dies ist 
organisatorisch deutlich einfacher als das direkte Verfahren, erfordert dafür aber statistischen 
Mehraufwand, der oft mit langen Rechenzeiten und hohen Anforderungen an die Fallzahlen 
verbunden ist. 

In diesem Beitrag geht es um eine Routineaufgabe der Laboratoriumsdiagnostik, die hundert- bis 
tausendfach pro Labor anfällt, nämlich die Prüfung, ob vorgegebene Referenzgrenzen zu den 
lokalen Gegebenheiten hinsichtlich Analytik und Präanalytik passen oder nicht. Hierfür sollte nach 
Möglichkeit kein so großer Aufwand betrieben werden wie für die De-novo-Bestimmung von 
Referenzintervallen, um zeitliche und personelle Ressourcen zu schonen. 

Wir stellen im Folgenden einfache Verfahren vor, die es erlauben, mit geringem mathematischem 
Aufwand und moderaten Fallzahlen zu überprüfen, welche Referenzintervalle im 

https://www.trillium.de/mytrillium/registrieren.html
https://www.trillium.de/mytrillium/registrieren.html
https://www.trillium.de/services/software.html
https://www.trillium.de/zeitschriften/trillium-diagnostik/ausgaben-2019/td-heft-32019/schwerpunkt/referenzbereiche-im-medizinischen-labor.html
https://www.trillium.de/zeitschriften/trillium-diagnostik/ausgaben-2020/td-heft-12020/informationstechnologie/referenzintervall-ueberpruefung-ein-konzept-wird-erwachsen.html
https://www.trillium.de/zeitschriften/trillium-diagnostik/ausgaben-2020/td-heft-12020/informationstechnologie/referenzintervall-ueberpruefung-ein-konzept-wird-erwachsen.html
https://pubmed.ncbi.nlm.nih.gov/34081933/
https://pubmed.ncbi.nlm.nih.gov/29672266/


Laborinformationssystem akzeptiert werden können und welche einer Korrektur bedürfen. Zur 
einfachen Beurteilung der Ergebnisse haben wir ein Ampelfarbenschema entwickelt, das auf 
einen Blick anzeigt, bei welchen Analyten der höchste Handlungsbedarf besteht. 

 

Kapitel 2 

Material und Methodik 
Daten 

Die verwendeten Echtdaten stammen aus einem öffentlich zugänglichen Data Repository für 
Projekte zum maschinellen Lernen (Hoffmann G et al. 2018, Oladimeji O 2021). Sie können mit R 
unmittelbar eingelesen und analysiert werden. Mit folgendem Code werden die ersten Zeilen des 
Datensatzes dargestellt. ` 

x <- read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/00571/hcvd

at0.csv") 

head(x) #zeigt die ersten Zeilen des Datensatzes an 

##   X      Category Age Sex  ALB  ALP  ALT  AST  BIL   CHE CHOL CREA  GGT PROT 

## 1 1 0=Blood Donor  32   m 38.5 52.5  7.7 22.1  7.5  6.93 3.23  106 12.1 69.0 

## 2 2 0=Blood Donor  32   m 38.5 70.3 18.0 24.7  3.9 11.17 4.80   74 15.6 76.5 

## 3 3 0=Blood Donor  32   m 46.9 74.7 36.2 52.6  6.1  8.84 5.20   86 33.2 79.3 

## 4 4 0=Blood Donor  32   m 43.2 52.0 30.6 22.6 18.9  7.33 4.74   80 33.8 75.7 

## 5 5 0=Blood Donor  32   m 39.2 74.1 32.6 24.8  9.6  9.15 4.32   76 29.9 68.7 

## 6 6 0=Blood Donor  32   m 41.6 43.3 18.5 19.7 12.3  9.92 6.05  111 91.0 74.0 

Der Datensatz besteht aus 615 Zeilen mit quantitativen Laborwerten von 238 Frauen und 377 
Männern im Alter von 19 bis 77 Jahren. Davon sind insgesamt 540 Personen Blutspender, die 
übrigen 75 weisen unterschiedliche Schweregrade einer Hepatitis C auf. Bei allen Personen 
wurden zehn Biomarker für die Diagnostik einer Leberschädigung bestimmt (ALB, ALP, ALT, 
AST, BIL, CHE, CHOL, CREA, GGT, PROT). Die Angaben für Geschlecht und 
Krankheitskategorie wandelt man mit folgendem Code in sog. “Faktoren” (nominale Variablen) 
um. 

x$Sex <- as.factor(x$Sex) 

x$Category <- as.factor(x$Category) 

summary(x[, c(2, 4)]) 

##                    Category   Sex     

##  0=Blood Donor         :533   f:238   

##  0s=suspect Blood Donor:  7   m:377   

##  1=Hepatitis           : 24           

##  2=Fibrosis            : 21           

##  3=Cirrhosis           : 30 

Als zweites Input-File benötigen wir die Grenzwerte des Herstellers, die überprüft werden sollen. 
Beispielhaft erzeugen wir eine Matrix mit den Angaben für Albumin (ALB) in g/l und Alanin-
Aminotransferase (ALT) in U/l. 

  

https://archive.ics.uci.edu/ml/index.php
https://jlpm.amegroups.com/article/view/4401/5425
http://ijmi.ir/index.php/IJMI/article/view/274


ref <- matrix(c(35.6, 46.1, 35.6, 46.1, 10, 35, 10, 50), nrow = 4)  

rownames(ref) <- c("Frauen UG", "Frauen OG", "Männer UG", "Männer OG") 

colnames(ref) <- c("ALB", "ALT") 

ref 

##            ALB ALT 

## Frauen UG 35.6  10 

## Frauen OG 46.1  35 

## Männer UG 35.6  10 

## Männer OG 46.1  50 

Die Abkürzungen UG und OG stehen hier für Untergrenze und Obergrenze. 

 

Zusatzpakete 

Für die Umsetzung der nachfolgend beschriebenen Algorithmen werden zwei zusätzliche R-
Pakete benötigt: 

• truncnorm von O Mersmann et al. 2018 für trunkierte Normalverteilungen 
• zlog von S Gibb 2021 für die Berechnung von zlog-Werten. 

Die Installation erfolgt mit den Funktionen install.packages(truncnorm) und install.packages(zlog). 
Diese Packages muss man bei jedem Programmstart aktivieren. 

library(truncnorm) 

library(zlog) 

 

Kapitel 3 

Datenaufbereitung und Bewertung nach Geschlecht und 
Alter 
Im ersten Schritt erzeugen wir den gewünschten Ausschnitt aus den Daten (ALB und ALT) und 
entfernen alle Zeilen mit fehlenden Werten (NA). 

xx <- na.omit(x[, c(2 : 5, 7)]) #extrahiert die Spalten 2 bis 4 plus die Werte für 

ALB und ALT 

Zur groben Prüfung auf Geschlechtsunterschiede werden die Messwerte für Frauen und Männer 
getrennt als Boxplots angezeigt. Um die Bilder für ALB und ALT nebeneinander zu platzieren, 
verwenden wir die Funktion par (Parametereinstellungen für Grafiken) mit dem Argument mfrow 
(multiple figures arranged by rows). 

  

https://cran.r-project.org/web/packages/truncnorm/index.html
https://cran.r-project.org/package=zlog


par(mfrow = c(1, 2)) #Bildanordnung in 1 Zeile und 2 Spalten 

boxplot(xx$ALB ~ xx$Sex,  

        main = "ALB", xlab = "Geschlecht", ylab = "g/l",  

        col = c("pink", "lightblue"), notch = TRUE)  

grid() 

boxplot(xx$ALT ~ xx$Sex,  

        main = "ALT", xlab = "Geschlecht", ylab = "U/l",  

        col = c("pink", "lightblue"), notch = TRUE) 

grid() 

 

Man kann aufgrund der Lage der Kästen (boxes) und Kerben (notches) auch ohne aufwendige 
Statistik bereits vorhersagen, dass sich die Grenzwerte für Frauen und Männer unterscheiden 
werden, obwohl der Hersteller beim Albumin nicht nach dem Geschlecht differenziert. Für die 
weitere Auswertung werden wir die Datensätze folglich nach dem Geschlecht trennen. 

x.f <- subset(xx, xx$Sex == "f") 

x.m <- subset(xx, xx$Sex == "m") 

Zur Datenaufbereitung gehört auch stets eine Überprüfung der Altersabhängigkeit. Für 
ausgefüllte Punkte verwenden wir den Grafikparameter pch (plotting character) mit dem Wert 20. 

  



par(mfrow = c(2, 2)) #Bildanordnung in 2 Zeilen und 2 Spalten) 

plot(x.f$Age, x.f$ALB, main = "ALB (f)", xlab = "Alter (Jahre)", ylab = "g/l", 

     ylim = c(min(xx$ALB), max(xx$ALB)), col = "red", pch = 20)  

grid() 

abline(h = ref[1 : 2, 1], lty = 2) #Grenzwerte ALB für Frauen als waagrechte gestri

chelte Linien 

plot(x.m$Age, x.m$ALB, main = "ALB (m)", xlab = "Alter (Jahre)", ylab = "g/l", 

     ylim = c(min(xx$ALB), max(xx$ALB)), col = "blue", pch = 20) 

grid() 

abline(h = ref[3 : 4, 1], lty = 2) #Grenzwerte ALB für Männer 

plot(x.f$Age, x.f$ALT, main = "ALT (f)", xlab = "Alter (Jahre)", ylab = "U/l", 

     ylim = c(min(xx$ALT), max(xx$ALT)), col = "red", pch = 20)  

grid() 

abline(h = ref[1 : 2, 2], lty = 2) #Grenzwerte ALT für Frauen 

plot(x.m$Age, x.m$ALT, main = "ALT (m)", xlab = "Alter (Jahre)", ylab = "U/l", 

     ylim = c(min(xx$ALT), max(xx$ALT)), col = "blue", pch = 20) 

grid() 

abline(h = ref[3 : 4, 2], lty = 2) #Grenzwerte ALT für Männer 

 

Auf den Bildern sind keine auffälligen Trends zu erkennen. Deshalb werden wir die Werte für die 
Referenzintervallprüfung ohne Alterspartitionierung verwenden. Ganz überschlägig erkennen wir 
an dieser grafischen Darstellung, dass die Hauptmenge der Punkte innerhalb der jeweiligen 



Grenzwerte des Herstellers liegt. Für eine genaue Überprüfung der Referenzintervalle reicht 
diese grobe Darstellung allerdings nicht aus. 

 

Kapitel 4 

Prüfung der Referenzintervalle anhand von trunkierten 
zlog-Werten 
Die Idee hinter dem nun ausführlich vorgestellten zweistufigen Algorithmus ist einfach: 

• Durch die zlog-Normalisierung werden die Echtdaten so transformiert, dass ihr 
Referenzintervall unabhängig von Methode, Einheit etc. einheitlich von -1.96 bis +1.96 
reicht (siehe Hoffmann G et al. J Lab Med 2017). 

• Der klassische Boxplot wird so modifiziert, dass die Enden der Whiskers möglichst exakt 
die zentralen 95 % der (nicht-pathologischen) Hauptfraktion aller Werte markieren (siehe 
Klawonn F & Hoffmann G in Advances in Intelligent Systems and Computing, Springer 
Nature 2022). Diese entsprechen definitionsgemäß den zlog-Werten innerhalb des 
geschätzten Referenzintervalls. 

Man muss dann nur noch prüfen, wie weit die so erhaltenen Referenzgrenzen von den 
erwarteten Grenzwerten -1.96 und +1.96 abweichen, um eine Aussage machen zu können, ob 
die vorgegebenen Grenzen zu den Echtdaten passen oder nicht. 

 

Berechnung von zlog-Werten 

Zur Berechnung von zlog-Werten verwenden wir die zlog-Funktion aus dem zlog-Package (eine 
Beschreibung erhält man wie üblich mit ?zlog, wenn das Package korrekt installiert und aktiviert 
wurde). Die Funktion erwartet als Parameter einen Absolutwert (z. B. 40) und die zugehörigen 
Referenzgrenzen (z. B. 35.6 und 46.1), und gibt den transformierten Wert zurück. 

zlog(40, c(35.6, 46.1)) 

## [1] -0.1926064 

Das Ergebnis von etwa -0.2 liegt nahe bei 0 und besagt, dass der Wert mitten im standardisierten 
Referenzintervall von -1.96 bis +1.96 liegt. 

Hier ist ein Codebeispiel für die Berechnung und grafische Darstellung der zlog-Werte von 
Albumin als Dichtekurve und Boxplot: 

par(mfrow = c(1, 2)) 

zlog.alb <- zlog(xx$ALB, ref[1 : 2, 1]) 

plot(density(zlog.alb), main = "Dichtekurve", xlab = "zlog ALB", ylab = "") 

grid() 

abline(v = c(-1.96, 1.96), lty = 2) 

boxplot(zlog.alb, main = "Boxplot", ylab = "zlog ALB", xlab = "") 

grid() 

abline(h = c(-1.96, 1.96), lty = 2) 

https://www.researchgate.net/publication/313582123_Der_zlog-Wert_als_Basis_fur_die_Standardisierung_von_Laborwerten
https://www.springer.com/series/11156
https://www.springer.com/series/11156


 

Die Hauptmenge der zlog-Werte streut erwartungsgemäß um 0 und befindet sich zwischen den 
standardisierten Referenzgrenzen von -1.96 und +1.96. Man sieht der dezentralen Lage der 
Dichtekurve bzw. der Box aber bereits mit freiem Auge an, dass das vorgegebene 
Referenzintervall (gestrichelte Linien) nicht gut zu den Messwerten passt. 

Hinweis: Dichtekurve und Boxplot wurden für ALB geschlechtsunabhängig erstellt, da die 
vorgegebenen Grenzwerte für Männer und Frauen gleich sind. Bei unterschiedlichen 
Grenzwerten erfolgt die Berechnung und grafische Darstellung geschlechtsspezifisch. 
Beispielsweise würde die zlog-Normalisierung für die ALT-Grenzwerte bei Männern wie folgt 
berechnet: 

zlog.alt.m <- zlog(x.m$ALT, ref[3 : 4, 2]) 

 

Trunkierung der Werte mit dem iBoxplot95-Verfahren 

Beim klassischen Boxplot reichen die Enden der Whiskers im obigen Beispiel (rechte Abbildung) 
weit über die gestrichelten Referenzgrenzen hinaus. Das liegt vor allem an den pathologischen 
Werten im Datensatz. Das Ziel der Modifikation iBoxplot95 ist es nun, die Whiskers so weit zu 
kürzen, dass sie im Idelfall mit den Referenzgrenzen der unauffälligen Werte übereinstimmen. 
Ausgehend von der Überlegung, dass die zentralen 50 % der Daten (also die Werte innerhalb der 
Box des Boxplots) so gut wie keine pathologischen Werte enthalten sollten, versuchen wir also, 
mit einem statistischen Verfahren von den zentralen 50 % auf die zentralen 95 % zu schließen. 

Wir wählen als Startpunkt der beiden Whiskers den Median (Q2) und berechnen einen Faktor qf 
(“Quantilfaktor”) aus der jeweils kleineren Hälfte der Box (unter der Annahme, dass diese Seite 
der Verteilung durch die pathologischen Werte weniger beeinflusst wird). Bei einer idealen 
Normalverteilung sind die beiden Hälften gleich breit und der Quantilfaktor lässt sich leicht aus 
den Quantilen 0.25 und 0.025 bzw. 0.75 und 0.975 der Standardnormalverteilung berechnen. 

  



qnorm(p = 0.025) / qnorm(p = 0.25) 

## [1] 2.905847 

qnorm(p = 0.975) / qnorm(p = 0.75) 

## [1] 2.905847 

Für den Trunkierungs-Algorithmus gibt es bislang noch kein Package. Die Funktion iBoxplot95() 
ist jedoch relativ leicht selbst zu programmieren. Zur besseren Verständlichkeit gliedern wir den 
Algorithmus in zwei Funktionen. Die erste namens truncate.x führt die eigentliche Trunkierung 
durch, indem sie von den Quartilen des Datensatzes mithilfe des Quantilfaktors qf auf die 
theoretischen Referenzgrenzen einer Standardnormalverteilung schließt. 

truncate.x <- function(x, qf = 2.906){ 

  #qf = quantile factor to derive qnorm(0.025) from qnorm(0.25) 

  Q <- quantile(x, c(0.25, 0.5, 0.75))     

  var1 <- Q[2] - Q[1] 

  var2 <- Q[3] - Q[2] 

  var <- min(var1, var2) 

  lim <- c(Q[2] - qf * var, Q[2] + qf * var) 

  return(subset(x, x >= lim[1] & x <= lim[2])) 

} 

Als Beispiel ergeben sich für Albumin folgende statistischen Kennzahlen: 

trunc.alb <- truncate.x(zlog.alb) 

summary(trunc.alb) 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

## -2.7918 -0.4604  0.6194  0.5836  1.6945  3.8446 

Diese Zahlen bestätigen den visuellen Eindruck der obigen Abbildungen quantitativ: Der Median 
liegt nicht bei 0, sondern ist mit etwa 0.6 nach rechts verschoben, und die Extremwerte liegen 
jenseits der erwarteten Referenzgrenzen von -1.96 bzw. +1.96. Das letztere Phänomen kann 
man allerdings noch nicht sicher einem zu breiten Referenzintervall anlasten, denn es ist 
durchaus möglich, dass dieser erste Trunkierungsschritt noch nicht alle pathologischen Werte 
entfernt hat. 

Deshalb ruft die zweite Funktion namens iBoxplot95 diesen Algorithmus iterativ so oft auf, bis 
außerhalb der so berechneten Whiskers keine Werte mehr gefunden werden. 

  



iBoxplot95 <- function(x, lognorm = FALSE){ 

  if(lognorm){xx <- log(xx)} else {xx <- x} 

  #setzt die Startparameter 

  n0 <- 1 

  n1 <- 0 

  qf <- 2.906 

  i <- 1 

  #trunkiert xx solange, bis keine Ausreißer mehr gefunden werden 

  while (n0 > n1){ 

    n0 <- length(xx) 

    xx <- truncate.x(xx, qf = qf) 

    n1 <- length(xx) 

    qf <- 3.083 

  } 

  if (lognorm){xx <- exp(xx)} 

  return(xx) 

} 

Eine Besonderheit dieser iterativen Funktion besteht darin, dass der Quantilfaktor qf nach dem 
ersten Durchgang von 2.906 auf 3.083 erhöht wird. Diese geringfügige Verlängerung der 
Whiskers trägt dem Umstand Rechnung, dass die Trunkierung ab dem zweiten Durchgang aus 
einer bereits trunkierten Wertemenge erfolgt. Bei der Berechnung von qf verwenden wir deshalb 
für das 0.25-Quantil die Funktion qtruncnorm anstelle von qnorm, um von der trunkierten auf die 
untrunktierte Verteilung zu schließen (aus der wir dann das 0.025- und das 0.975-Quantil 
schätzen). 

qnorm(p = 0.025) / qtruncnorm(p = 0.25, a = -1.96, b = 1.96) 

## [1] 3.083352 

Mit der so angepassten Funktion iBoxplot95 erhält man für Albumin folgende Kennzahlen: 

trunc.alb <- iBoxplot95(zlog.alb) 

summary(trunc.alb) 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

## -2.3921 -0.3834  0.6194  0.6012  1.6945  3.6399 

Wie man sieht, sind die Grenzen durch den wiederholten Aufruf von truncate.x etwas enger 
geworden, sprechen jedoch weiterhin dafür, dass das vom Hersteller vorgegebene 
Referenzintervall zu weit ist. 

  



Kapitel 5 

Grafische Ausgabe des Ergebnisses 
Dieses Ergebnis wollen wir nun so visualisieren, dass man das Referenzintervall auch ohne 
tiefergehendes Statistikwissen intuitiv beurteilen kann. Dazu erstellen wir zwei Grafiken, die die 
tatsächliche Verteilung der trunkierten zlog-Werte mit der theoretisch zu erwartenden Verteilung 
vergleicht. 

par(mfrow = c(1, 2)) 

hist(trunc.alb, freq = FALSE, xlim = c(-4, 4), 

     col = "white", border = "gray",  

     main = "empirische Verteilung", xlab = "zlog", ylab = "Dichte") 

lines(density(trunc.alb), lty = 2) 

grid() 

    abline(v = 0) 

curve(dtruncnorm(x, a = -1.96, b = 1.96), from = -4, to = 4, lty = 2,  

      main = "theoretische Verteilung", xlab = "zlog", ylab = "Dichte") 

grid() 

    abline(v = 0) 

 

Man sieht links das Histogramm der realen zlog-Werte nach Entfernung der Ausreißer; die 
gestrichelte Linie zeigt die “empirische Dichtekurve”, die sich sehr einfach mit density(trunc.alb) 
berechnen lässt. Rechts sehen wir zum Vergleich, wie die Dichtekurve aussehen müsste, wenn 



die zlog-Werte in etwa standardnormalverteilt wären (Mittelwert 0, Standardabweichung 1), und 
wenn das vorgegebene Referenzintervall exakt den Quantilen 0.025 und 0.975 entspräche. 

Der Unterschied ist augenfällig: Die empirische Dichtekurve erscheint andeutungsweise 
zweigipflig (bimodal), wobei der zweite Peak nach rechts verschoben ist. Wenn wir uns noch 
einmal die Boxplots für Albumin im Kapitel 3 ansehen, so bestätigt dieses Bild unseren Verdacht, 
dass ein gemeinsames Referenzintervall für beide Geschlechter die Realität nicht gut 
widerspiegelt, weil die Werte der Männer etwas höher als diejenigen der Frauen sind. 

 

Kapitel 6 

Ampelfarben als Interpretationshilfe 
Nun wollen wir die Abweichungen zwischen Soll und Ist klinisch bewerten und farbig 
kennzeichnen. Angelehnt an eine einfache Daumenregel von IFCC und EFLM (Henny J et 
al. 2016) zur RI-Überprüfung wird eine Abweichung von ± 10 % des normierten Referenzbereichs 
als tolerierbar angesehen. Ausgedrückt in zlog-Werten entspricht dies ± 0.392, weil das 
standardisierte Referenzintervall ja unabhängig vom Analyten immer 2 * 1.96 = 3.92 beträgt. 

Die nachfolgende Funktion zlog.density kombiniert die obigen beiden Dichtekurven und 
kennzeichnet Abweichungen zwischen empirischen und theoretischen Referenzgrenzen mit 
Ampelfarben: Grün werden Abweichungen von weniger als ± 10 % des Referenzbereichs 
gekennzeichnet, rot markieren wir mehr als doppelt so große Abweichungen und gelb den 
Bereich dazwischen. 

  

https://pubmed.ncbi.nlm.nih.gov/27748267/
https://pubmed.ncbi.nlm.nih.gov/27748267/


zlog.density <- function(x, limits, main = ""){ 

  # x = Vektor positiver Zahlen, limits = Vektor der Länge 2 mit den vorgegebenen R

eferenzgrenzen 

  zlog.x <- zlog(x, limits) # berechnet zlog-Werte 

  trunc.x <- iBoxplot95(zlog.x) # filtert die zentralen 95 % der "wahrscheinlich no

rmalen" Werte 

   

  # zeichnet eine kombinierte Grafik aus empirischer und theoretischer Verteilung 

  d <- density(trunc.x) 

  y.max <- max(max(d$y), 0.45) # obere Begrenzung der y-Achse 

  hist(trunc.x, freq = FALSE,  

    xlim = c(-4, 4), ylim = c(0, y.max), 

    col = "white", border = "gray",  

    main = main, xlab = "", ylab = "") 

  lines(d, lty = 2) 

  curve(dtruncnorm(x, a = -1.96, b = 1.96), from = -4, to = 4, add = TRUE) 

  grid() 

  abline(v = 0) 

   

  # zeichnet farbige Toleranzbereiche mit Ampelfarben (tf.col = traffic light color

s) ein  

  tf.col <- c(rgb(0.1, 1, 0.1, 0.5), rgb(1, 1, 0.1, 0.5), rgb(1, 0.1, 0.1, 0.5)) 

  verif.col <- c(tf.col[1], tf.col[1]) # Voreinstellung zweimal Grün 

  col.lim <- c(-2.744, -2.352, -1.568, -1.176, 1.176, 1.568, 2.352, 2.744) 

   

  if(min(trunc.x) < col.lim[2] | min(trunc.x) > col.lim[3]){verif.col[1] <- tf.col[

2]} 

  if(min(trunc.x) < col.lim[1] | min(trunc.x) > col.lim[4]){verif.col[1] <- tf.col[

3]} 

  if(max(trunc.x) < col.lim[6] | max(trunc.x) > col.lim[7]){verif.col[2] <- tf.col[

2]} 

  if(max(trunc.x) < col.lim[5] | max(trunc.x) > col.lim[8]){verif.col[2] <- tf.col[

3]} 

    

  rect(col.lim[2], 0, col.lim[3], y.max, col = verif.col[1], border = "gray", lty = 

3) 

  rect(col.lim[6], 0, col.lim[7], y.max, col = verif.col[2], border = "gray", lty = 

3) 

  abline(v = c(min(trunc.x), max(trunc.x)), lty = 2) 

   

  return(c(low.lim = round(min(trunc.x), 2), upp.lim = round(max(trunc.x), 2))) 

} 

Mithilfe dieser Funktion erstellen wir nun das farbig markierte Dichtediagramm für Albumin. 



zlog.density(xx$ALB, ref[1 : 2, 1], main = "Albumin") 

 

## low.lim upp.lim  

##   -2.39    3.64 

Aus dem Bild und den darunter abgedruckten zlog-Werten ergeben sich folgende zwei 
Schlussfolgerungen: 

• Die empirische Untergrenze von -2.39 liegt knapp unterhalb der Toleranzgrenze von -
2.35. Der linke Toleranzbereich ist deshalb gelb gefärbt. 

• Die empirische Obergrenze von 3.64 liegt weit oberhalb der Toleranzgrenze von +2.35. 
Der rechte Toleranzbereich ist deshalb rot gefärbt. 

Mit wenigen Zeilen Code lässt sich diese Grafik für alle zu prüfenden Referenzintervalle erstellen. 
Die Funktionsergebnisse werden in eine Tabelle geschrieben und ausgegeben. 

  



zlog.results <- matrix(NA, nrow = 4, ncol = 2) 

rownames(zlog.results) <- rownames(ref) 

colnames(zlog.results) <- c("ALB Schätzung", "ALT Schätzung") 

par(mfrow = c(2, 2), mar=c(3, 4.1, 3, 2.1)) # vier Grafiken mit verkleinerten Rände

rn (margins) 

zlog.results[1 : 2, 1] <- zlog.density(x.f$ALB, ref[1 : 2, 1], main = "ALB (Frauen)

") 

zlog.results[3 : 4, 1] <- zlog.density(x.m$ALB, ref[3 : 4, 1], main = "ALB (Männer)

") 

zlog.results[1 : 2, 2] <- zlog.density(x.f$ALT, ref[1 : 2, 2], main = "ALT (Frauen)

") 

zlog.results[3 : 4, 2] <- zlog.density(x.m$ALT, ref[3 : 4, 2], main = "ALT (Männer)

") 

 

zlog.results 

##           ALB Schätzung ALT Schätzung 

## Frauen UG         -2.26         -1.72 

## Frauen OG          1.93          1.34 

## Männer UG         -1.66         -1.62 

## Männer OG          3.73          2.53 

  



Auch diese Abbildungen sind sehr leicht interpretierbar: 

• Von den insgesamt acht überprüften Referenzgrenzen liegen fünf im “grünen Bereich”, 
sprich innerhalb des Toleranzbereichs von 1.96 ± 0.392 (Obergrenze) bzw. -1.96 ± 0.392 
(Untergrenze). 

• Die zwei Obergrenzen der ALT werden gelb markiert, sollten also einer Inspektion (zum 
Beispiel durch Vergleich mit der Literatur) unterzogen werden. 

• Die geschlechtsübergreifend angegebene Obergrenze für Albumin ist nur für Frauen 
geeignet. Für Männer wurde sie rot markiert; hier sollte vermutlich ein höherer Grenzwert 
eingesetzt werden. 

Ein Blick in die Literatur zeigt, dass die Grenzwerte für Albumin in der Tat in Abhängigkeit von 
Alter und Geschlecht sowie dem eingesetzten Analyseverfahren variieren können und deshalb 
individuell angepasst werden müssen (Weaving G et al. Ann Clin Biochem 2016, Jassam N et 
al. Ann Clin Biochem 2020) 

 

Kapitel 7 

Schätzung absoluter Zielwerte 
Das hier vorgestellte Screeningverfahren ist kein Ersatz für eine sorgfältige Bestimmung von 
Referenzintervallen nach den Leitlinien und Empfehlungen internationaler und nationaler 
Fachgesellschaften. Dennoch ist aus den Abbildungen natürlich die Richtung ablesbar, in der der 
korrekte Grenzwert zu suchen ist. 

Mithilfe der Funktion izlog() (inverse zlog) lassen sich zlog-Werte bei Kenntnis des zugrunde 
liegenden Referenzintervalls in Absolutwerte umrechnen. Das nachfolgende Codebeispiel 
ermittelt absolute Zielwerte aus der Tabelle zlog.results. 

absolute.results <- zlog.results 

absolute.results[1 : 4, 1] <- izlog(zlog.results[1 : 4, 1], ref[1 : 2, 1]) 

absolute.results[1 : 2, 2] <- izlog(zlog.results[1 : 2, 2], ref[1 : 2, 2]) 

absolute.results[3 : 4, 2] <- izlog(zlog.results[3 : 4, 2], ref[3 : 4, 2]) 

cbind(ref, round(absolute.results, 1)) 

##            ALB ALT ALB Schätzung ALT Schätzung 

## Frauen UG 35.6  10          34.9          10.8 

## Frauen OG 46.1  35          46.0          28.7 

## Männer UG 35.6  10          36.3          11.5 

## Männer OG 46.1  50          51.8          63.2 

Die Spalten 1 und 2 dieser Tabelle enthaltenen die vorgegebenen Referenzgrenzen, die Spalten 
3 und 4 die aus den zlog-Werten geschätzten Zielwerte. Auch hier sieht man, dass vor allem die 
Obergrenze für das Albumin der Männer erheblich von der Vorgabe des Herstellers abweicht 
(51.8 vs. 46.1 g/l); der Unterschied von 5.7 g/l entspricht immerhin mehr als 50 % des 
Referenzbereichs (46.1 - 35.6 = 10.5 g/l). Ob die Abweichungen der ALT-Obergrenzen um etwa 
6 bzw. 11 U/l (rund 25 % des Referenzbereichs) klinisch relevant sind, sollte das jeweilige Labor 
individuell entscheiden. 

Mit der izlog-Funktion lassen sich auch die Toleranzgrenzen aus der “IFCC-Daumenregel” in 
Absolutwerten angeben. 

  

https://pubmed.ncbi.nlm.nih.gov/26071488/
https://pubmed.ncbi.nlm.nih.gov/32646226/
https://pubmed.ncbi.nlm.nih.gov/32646226/


tol.abs <- matrix(0, nrow = 3, ncol = 6) 

rownames(tol.abs) <- c("ALB", "ALT(f)", "ALT(m)") 

colnames(tol.abs) <- c("UG", "von", "bis", "OG", "von", "bis") 

tol.abs[, 1] <- c(ref[1, 1 : 2], ref[3, 2]) #Übertragung der Untergrenzen aus ref 

tol.abs[, 4] <- c(ref[2, 1 : 2], ref[4, 2]) #Übertragung der Obergrenzen aus ref 

tol.zlog <- c(-2.352, -1.568, 1.568, 2.352) #-1.96 ± 0.392 und 1.96 ± 0.392 

for (i in 1 : 3){ 

  lim <- tol.abs[i, c(1, 4)] # Referenzgrenzen für die Funktion izlog 

  tol.abs[i, 2] <- izlog(tol.zlog[1], limits = lim) 

  tol.abs[i, 3] <- izlog(tol.zlog[2], limits = lim) 

  tol.abs[i, 5] <- izlog(tol.zlog[3], limits = lim) 

  tol.abs[i, 6] <- izlog(tol.zlog[4], limits = lim) 

} 

round(tol.abs, 1) 

##          UG  von  bis   OG  von  bis 

## ALB    35.6 34.7 36.5 46.1 44.9 47.3 

## ALT(f) 10.0  8.8 11.3 35.0 30.9 39.7 

## ALT(m) 10.0  8.5 11.7 50.0 42.6 58.7 

Wie man sieht, bewirkt die in der zlog-Normalisierung enthaltene Logarithmierung, dass der 
Toleranzbereich für die untere Referenzgrenze enger als derjenige für die Obergrenze ist. Dies 
entspricht einer Forderung der einschlägigen DGKL-Arbeitsgruppe (Haeckel R et al. CCLM 
2017). Grafisch lassen sich die vorgegebenen Referenzintervalle und Toleranzbereiche zum 
Beispiel mit Linien und Kästchen folgendermaßen darstellen: 

plot(0, type = "n", xlim = c(0, 60), ylim = c(0, 4), yaxt = "n", 

     main = "Referenzintervalle und Toleranzbereiche", xlab = "Einheit (g/l bzw. U/

l)", ylab = "") 

grid() 

for (i in 1 : 3){ 

  text(x = 0, y = 4 - i, rownames(tol.abs)[i], pos = 4) 

  lines(x = tol.abs[i, c(1, 4)], y = rep(4 - i, 2), lwd = 5, col = i + 2) 

  rect(tol.abs[i, 2], 3.8 - i, tol.abs[i, 3], 4.2 - i) 

  rect(tol.abs[i, 5], 3.8 - i, tol.abs[i, 6], 4.2 - i) 

} 

https://pubmed.ncbi.nlm.nih.gov/28151722/
https://pubmed.ncbi.nlm.nih.gov/28151722/


 

Das hier vorgeschlagene empirische Prüfverfahren legt beim Albumin recht strenge Maßstäbe an 
die Referenzintervall-Überprüfung an, während er bei der Obergrenze der ALT “toleranter” ist. 
Dies ist klinisch plausibel, weil der Organismus den Albuminspiegel deutlich enger reguliert als 
denjenigen der Transaminasen, sodass sich Abweichungen im ersten Fall auch klinisch stärker 
auswirken als im zweiten Fall. 

 

Kapitel 8 

Diskussion und Ausblick 
Unsere Studie schließt eine Lücke im Repertoire der Methoden für die RI-Prüfung. Bislang gibt es 
nur ein einziges leitliniengerechtes Verfahren, das ohne großen organisatorischen und 
rechnerischen Aufwand feststellt, ob ein vorgegebenes Referenzintervall zu den eigenen 
Messwerten passt oder nicht: Man führt hierfür Messungen an zwanzig “offensichtlich gesunden” 
Versuchspersonen durch und akzeptiert die Grenzen, wenn nicht mehr als zwei Messwerte 
außerhalb liegen (Horowitz G et al. CLSI/IFCC Document EP28-A3c, 2010). 

Dieses Verfahren wurde vielfach als unzureichend kritisiert, insbesondere weil 

• ein n von 20 kaum repräsentativ für das Einsenderkollektiv sein kann. 

• die erlaubte Zahl von zwei Ausreißern mehr als die erwarteten 5 % falsch positiver 
Resultate (also Zurückweisungen von theoretisch korrekten Referenzgrenzen) bewirkt. 

• zu weite Referenzintervalle mit diesem Verfahren grundsätzlich nicht erkannt werden 
können, weil in diesem Fall zu wenige Werte außerhalb liegen. 

Dazu kommt, dass der Rekrutierungsaufwand weiterhin relativ hoch ist, da die 20 gesunden 
Versuchspersonen ja pro Subkollektiv (Frauen, Männer, Kinder usw.) anfallen. Deshalb wurden in 
jüngerer Zeit viele indirekte Verfahren publiziert, die diese Probleme beheben sollen. Sie sind 
allerdings in der Regel zeit- und rechenaufwendig und benötigen sehr hohe Fallzahlen, die in 
kleineren Laboratorien nicht zur Verfügung stehen. 

https://clsi.org/media/1421/ep28a3c_sample.pdf


Unser Ziel war es, ein indirektes Verfahren vorzuschlagen, das in Millisekunden mit 
überschaubarer Fallzahl zu einer Aussage führt, ob die vorgegebenen Referenzgrenzen 
akzeptiert werden können oder nicht. Im Gegensatz zur derzeit üblichen Vorgehensweise 
bestimmen wir kein Referenzintervall de novo, sondern verwenden – ähnlich wie die o.g. 
CLSI/IFCC-Leitlinie – die vorgegebenen Grenzwerte. Aber anstelle der pauschalen Aussage, 
dass nicht mehr als 10 % der gemessenen Werte außerhalb liegen dürfen, analysieren wir die 
Verteilung der Werte zwischen den Grenzen und können auf diese Weise wesentlich detailliertere 
Aussagen machen als das Leitlinienverfahren. Durch den Einsatz von zlog-Werten anstelle von 
Absolutwerten erreichen wir zudem eine standardisierte Auswertung, die für alle Analyten 
unabhängig von Verfahren, Einheit usw. einheitlich beurteilt werden kann. 

Wir demonstrieren in dieser Arbeit, dass man solch detaillierte Aussagen mit einer ganzen Reihe 
visueller Verfahren untermauern kann. Neben Boxplots und Scatterplots eignen sich inbesondere 
Histogramme und Dichtekurven dazu, recht genau anzugeben, ob beispielsweise die Lage oder 
die Streuung der gemessenen Werte von der Erwartung abweicht. Weitere Darstellungsformen 
wie z. B. Quantil-Quantil-Plots von zlog-Werten sind aktuell in der Erprobung, um die Aussagen 
noch präziser und intuitiver zu machen. 

Wir arbeiten daran, die vorgeschlagenen Kennzahlen und Grafiken an einer Vielzahl von 
Analyten und Kollektiven zu testen und laden unsere Kolleginnen und Kollegen aus Labormedizin 
und Statistik dazu ein, sich an diesen Studien mit ihren eigenen Daten zu beteiligen. 
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