
Challenging biomarkers – simplified leukemia testing

Streamline your leukemia workflows

One NGS solution for multiple genomic alterations

Challenges of leukemia profiling

Oncohematology studies focus on profiling of relevant DNA variants and, particularly, RNA fusions, which frequently occur in myeloid and lymphoid hematological malignancies. A critical factor for accurate results is that there is no compromise on performance, especially when profiling challenging regions. Detection, calling and reporting of large InDels, such as CALR type 1 (52 bp del) and FLT3 ITDs, and also full coverage of GC-rich regions, such as CEBPA, requires optimized NGS workflows.

Recent advances in NGS chemistries, platforms and bioinformatics pipelines have empowered users to efficiently interrogate DNA and RNA alterations in biological samples. Current approaches, however, require the use of 2 separate workflows to prepare libraries from separate DNA and RNA isolates. Limitations of such approaches include:

- Precious samples, such as bone marrow, must be split to extract DNA and RNA in separate sample prep protocols
- Large amounts of sample material are required to generate sufficient amounts of input DNA and RNA for multiple workflows
- Workflow has added complexity of deriving integrated insights from results of different technical approaches, each with its own innate bias
- Separate workflows result in inefficient use of resources and long turnaround times

Streamlined, consolidated one-day workflow

To overcome the limitations associated with current approaches, the QIAseq Leukemia Multimodal panel starts with total nucleic acids (or DNA + RNA) and prepares targeted DNA and RNA libraries containing Unique Molecular Indices (UMIs) for Illumina® platforms using a one-day, consolidated workflow (see Figure 1).

The QIAseq Leukemia Multimodal panel delivers:

- The ONLY single consolidated workflow for simultaneous DNA + RNA library prep using total nucleic acids as input
- Operational efficiency with a 50% reduction in user interventions
- Confident detection of low-frequency variants with UMIs allowing detection of JAK2 and KIT at 1% VAF and KIT D816V at 0.4% VAF
- Reduced index hopping with Unique Dual Indices (UDIs)
- Comprehensive coverage of known and novel fusions as well as all relevant alterations
- Detection of large InDels, such as CALR type 1 (52 bp del) and FLT3 ITDs
- Full coverage of GC-rich regions, such as CEBPA
- Calling of homopolymer regions, such as for the ASXL1 homopolymeric p.G646fs*12 variant
- 145 DNA gene targets and 209 RNA fusion gene targets (Tables 1 and 2)

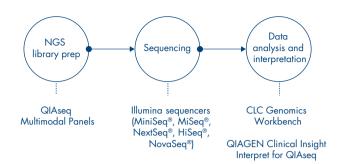


Figure 1. Extract more information, while reducing sample, time and cost with a simple, one-day workflow.* This flexible solution enables the construction of libraries compatible with Illumina platforms from as little as 10 ng total nucleic acid isolated from a wide range of samples. The data analysis pipelines in CLC Genomics Workbench translate raw sequence data in FASTQ format to DNA and RNA variant files (VCFs), which can be further interpreted for biological significance through QCI® Interpret for QIAseq.

Confidently interpret NGS variants

Our software workflow makes it easy to extract, identify the variants of interest and deliver a comprehensive variant interpretation from your raw NGS data. The industry leading genomic analysis and interpretation software solutions, CLC Genomic Workbench and QCI Interpret for QIAseq, provide you with a comprehensive report to support your workflow, including variant classification, details on variant function, literature references, drug labels, drug interactions and relevant clinical trials. Accelerate your clinical research and go from raw NGS data to detailed and trusted insights in minutes – not hours.

Our analysis and interpretation software solutions enable:

- Detection, calling and reporting of large InDels, such as CALR type 1 (52 bp del) and FLT3 ITDs with an identified insertion site (up to 228 bp) (Figures 2 and 3)
- Calling of homopolymer regions, even challenging ASXL1 homopolymeric variants, such as p.G646fs*12 (Figure 4)
- Full coverage of GC-rich regions, such as CEBPA (Figure 5)
- Detectable and reportable sensitivity levels down to 1% VAF for JAK2 and KIT and 0.4% VAF for KIT D816V using a comprehensive tutorial

Key differentiators

- The ONLY single consolidated workflow for DNA + RNA library prep using total nucleic acids as input
- Cuts user interventions by 50%
- Confident detection of low-frequency variants
- Detection of both known and novel fusions
- Increased target coverage of all relevant alterations
- Detection, calling and reporting of large InDels, such as CALR type 1 (52 bp del) and FLT3 ITDs
- Full coverage of GC-rich regions, such as CEBPA
- Calling of homopolymer regions, such as for the ASXL1 homopolymeric p.G646fs*12 variant

* One-day workflow for nucleic acid extraction and library prep.

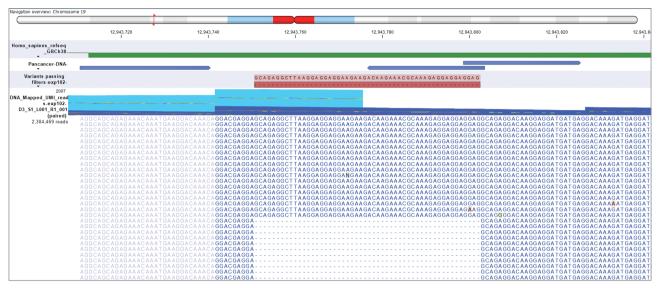


Figure 2. Detection, calling and reporting of large InDels, such as CALR type 1 (52 bp del).

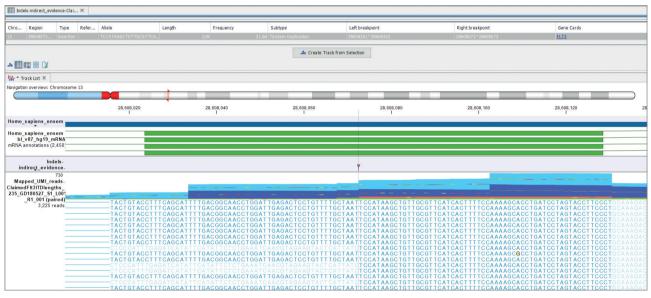


Figure 3. Detection, calling and reporting of FLT3 ITDs with an identified insertion site (up to 228 bp).

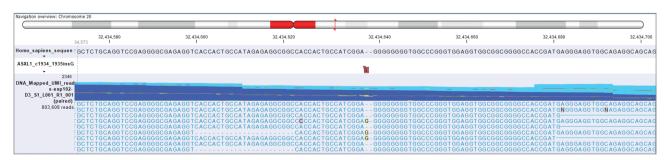


Figure 4. Calling of homopolymer regions, even challenging ASXL1 homopolymeric variants, such as p.G646fs*12.

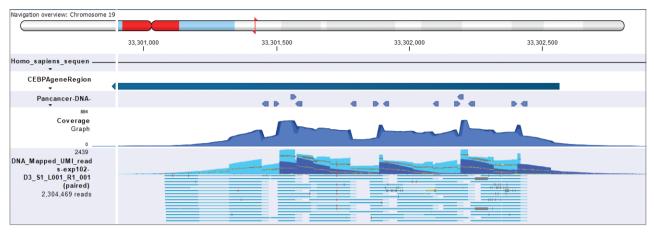


Figure 5. Full coverage of challenging GC-rich regions, such as CEBPA.

Table 1. 145 DNA gene targets

ABL1	CBLB	ETNK1	IL7R	MPL	PHF6	SH2D1A	WAS
ADA	CBLC	ETV6	JAK1	MSH2	PML	SMARCB1	WRN
ANKRD26	CDKN2A	EZH2	JAK2	MSH6	PMS2	SMC1A	WT1
ASXL1	CEBPA	FAM154B	JAK3	MYC	PPM1D	SMC3	XPO1
ASXL2	CHEK2	FAM47A	KAT6A	MYD88	PRAMEF2	SRP72	ZRSR2
ATM	CREBBP	FAM5C	KCNA4	NBN	PRF1	SRSF2	
ATRX	CRLF2	FAS	KCNK13	NF1	PRPF40B	STAG2	
BCL6	CSF1R	FBXW7	KDM6A	NOTCH1	PRPF8	STAT3	
BCOR	CSF3R	FLRT2	KDR	NPAT	PTEN	STXBP2	
BCORL1	CTCF	FLT3	KIT	NPM1	PTPN11	SUZ12	
BCR	CUX1	GATA1	KLHDC8B	NRAS	RAD21	TAL1	
BIRC3	DAXX	GATA2	KLHL6	NSD1	RB1	TERC	
BLM	DDX41	GJB3	KMT2A	NTRK3	RELN	TERT	
BRAF	DNM2	GNAS	KMT2C	OR13H1	RET	TET2	
BRCA1	DNMT1	HNRNPK	KMT2D	OR8B12	RUNX1	TNFRSF13B	
BRCA2	DNMT3A	HRAS	KRAS	P2RY2	SETBP1	TP53	
C17orf97	EED	IDH1	LRRC4	PAX5	SF1	TPMT	
CALR	EGFR	IDH2	LUC7L2	PBRM1	SF3A1	TUBA3C	
CARD11	ELANE	IKZF1	MAP2K1	PCDHB1	SF3B1	U2AF1	
CBL	EP300	IKZF3	MLH1	PDGFRA	SH2B3	U2AF2	

Table 2. 209 RNA fusion gene targets

ACTN4-KMT2A	INPP5D-ABL1	KMT2A-SEPT2	PAX5-ESRRB
AFF1-KMT2A	IRF2BP2-RARA	KMT2A-SEPT5	PAX5-ETV6
AGGF1-PDGFRB	JAK2-ETV6	KMT2A-SEPT6	PAX5-FOXP1
ATF7IP-PDGFRB	JAK2-PAX5	KMT2A-SEPT9	PAX5-JAK2
ATG16L2-KMT2A	JAK2-PCM1	KMT2A-SH3GL1	PAX5-PML
BCL3-MYC	KAT6A-CREBBP	KMT2A-SORBS2	PAX5-ZNF521
BCOR-RARA	KAT6A-EP300	KMT2A-TET1	PBX1-KMT2A
BCR-ABL1	KAT6A-NCOA2	KMT2A-TNRC18	PCM1-JAK2
BCR-FGFR1	KMT2A-ABI1	KMT2A-TOP3A	PICALM-MLLT10
BCR-JAK2	KMT2A-ABI2	KMT2A-ZFYVE19	PML-RARA
BTG1-MYC	KMT2A-ACTN4	KMT2E-ASNS	RABGAP1L-KMT2A
CBFA2T3-GLIS2	KMT2A-AFF1	LASP1-KMT2A	RANBP2-ALK
CBFB-MYH11	KMT2A-AFF3	LPP-KMT2A	RARA-KMT2A
CCDC88C-PDGFRB	KMT2A-AFF4	MAPRE1-KMT2A	RBM15-MKL1
CHIC2-ETV6	KMT2A-ARHGAP26	MEF2D-BCL9	RCSD1-ABL1
CREBBP-KMT2A	KMT2A-ARHGEF12	MEF2D-CSF1R	RCSD1-ABL2
CREBBP-ZNF384	KMT2A-BCL9L	MEF2D-HNRNPUL1	RPN1-MECOM
CUX1-FGFR1	KMT2A-BTBD18	MLLT10-CEP164	RUNX1-CBFA2T3
DDX3X-MLIT10	KMT2A-CASC5	MLITIO-CLP1	RUNX1-ETV6
DEK-NUP214	KMT2A-CBL	MUT10-KMT2A	RUNX1-MECOM
DHH-RHEBL1	KMT2A-CEP170B	MLLT10-PICALM	RUNX1-PRDM16
DSCAML1-KMT2A	KMT2A-CREBBP	MLLT10-PPP2R1B	RUNX1-RPL22
EBF1-PDGFRB	KMT2A-CT45A2	MLLT1-KMT2A	RUNXI-RUNXITI
ELF2-KMT2A	KMT2A-DAB2IP	MN1-ETV6	RUNXI-USP42
EML1-ABL1	KMT2A-DAD211 KMT2A-DCP1A	MNX1-ETV6	SET-NUP214
EP300-ZNF384	KMT2A-ELL	MYB-GATA1	SEI-INOF214 SFPQ-ABL1
EPS15-KMT2A	KMT2A-EP300	NAPILI-MLITIO	SSBP2-CSF1R
ETV6-ABL1	KMT2A-EPS15	NDE1-PDGFRB	SSBP2-JAK2
ETV6-ABL2	KMT2A-FLNA	NF1-LRRC37B	STAT5B-RARA
ETV6-ACSL6	KMT2A-FNBP1	NFKB1-KMT2A	STIL-TALI
ETV6-ANLN	KMT2A-FOXO3	NOTCH1-NOTCH1	STMN1-SPI1
ETV6-JAK2	KMT2A-FOXO4	NPM1-HAUS1	TAF15-ZNF384
ETV6-LYN	KMT2A-FRYL	NPM1-MLF1	TCF3-HLF
ETV6-MN1	KMT2A-GAS7	NPM1-RARA	TCF3-PBX1
ETV6-NCOA2	KMT2A-GPHN	NUMA1-RARA	TCF3-ZNF384
ETV6-NTRK3	KMT2A-KIAA0284	NUP214-ABL1	TCF7-SPI1
ETV6-PDGFRB	KMT2A-KIAA1524	NUP98-DDX10	TFG-GPR128
ETV6-PTPRR	KMT2A-LASP1	NUP98-HOXA9	TNIP1-PDGFRB
ETV6-RUNX1	KMT2A-LPP	NUP98-HOXC11	TOP1-NUP98
EWSR1-ZNF384	KMT2A-MAML2	NUP98-HOXC13	TRA-NOTCH1
FGFR1-LRRFIP1	KMT2A-MAPRE1	NUP98-HOXD13	TRA-SALL2
FGFR1OP-FGFR1	KMT2A-MLLT1	NUP98-KDM5A	TRB-NOTCH1
FGFR1-RANBP2	KMT2A-MLLT10	NUP98-LNP1	TRIP11-PDGFRB
FIP1L1-PDGFRA	KMT2A-MLLT11	NUP98-NSD1	UBA2-WTIP
FIP1L1-RARA	KMT2A-MLLT3	NUP98-PHF23	USP9X-DDX3X
FUS-ERG	KMT2A-MLLT4	NUP98-PRRX1	ZBTB16-ABL1
FXYD6-KMT2A	KMT2A-MLLT6	NUP98-PSIP1	ZBTB16-RARA
IGH-BCL6	KMT2A-MYO1F	NUP98-RAP1GDS1	ZMIZ1-ABL1
IGH-ETV6	KMT2A-NCKIPSD	NUP98-TOP1	ZMYM2-FGFR1
IGH-MYC	KMT2A-PDS5A	NUP98-WHSC1L1	ZMYM2-FLT3
IGK-MYC	KMT2A-PICALM	P2RY8-CRLF2	
IGL-BCL6	KMT2A-SARNP	PAX5-AUTS2	
IGL-MYC	KMT2A-SEPT11	PAX5-ELN	

Ordering Information

Product	Contents	Number of samples	Panel variant number	Cat. no.
QIAseq Leukemia	Kit containing all reagents (except	12	UHS-005Z-12	333932
Multimodal Panel	indices) for multimodal (DNA and RNA) sequencing	96	UHS-005Z-96	333935
QIAseq Multimodal Index I (12)	Box containing oligos, enough to process a total of 12 samples, for indexing up to a total of 12 samples for Multimodal panel sequencing on Illumina platforms			333962
QIAseq Multimodal Index I Set A (96)	Box containing oligos, enough to process a total of 48 samples, for indexing up to a total of 48 samples for Multimodal panel sequencing on Illumina platforms; one of two sets required for multiplexing 96 samples			333965
QIAseq Multimodal Index I Set B (96)	Box containing oligos, enough to process a total of 48 samples, for indexing up to a total of 48 samples for Multimodal panel sequencing on Illumina platforms; Two of two sets required for multiplexing 96 samples			333975
CLC Genomics Workbench, Desktop Plus	1 year subscription for a static license to use the software on a single computer. Includes maintenance, upgrade and service.			832021

Visit **go.qiagen.com/QIAseqmultimodal** and discover how you can double your NGS insights and free up half of your resources.

Visit the QIAseq Knowledge Hub at **www.qiagen.com/clp/qiaseq-knowledge-hub/** – your one-stop shop for QIAseq Multimodal (RNA + DNA) and Targeted DNA webinars.

Download our comprehensive tutorial for detection of specific low-frequency variants.

The QIAseq Leukemia Multimodal Panel is intended for molecular biology applications. This product is not intended for the diagnosis, prevention, or treatment of a disease.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at www.qiagen.com or can be requested from QIAGEN Technical Services or your local distributor.

Trademarks: QIAGEN[®], Sample to Insight[®], QIAseq[®], QCI[®] (QIAGEN Group); HiSeq[®], Illumina[®], MiniSeq[®], MiSeq[®], Nex/Seq[®], NovaSeq[®] (Illumina, Inc.). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law.

Ordering www.qiagen.com/shop | Technical Support support.qiagen.com | Website www.qiagen.com