
Einführung in R: Erste Schritte
Georg Hoffmann

2022-07-04

Inhalt

1. Hintergrund und Installation
2. Rechnen auf der R-Konsole
3. Daten erzeugen und verarbeiten
4. Grafiken erzeugen und formatieren

Kursvoraussetzungen
Dieser Einführungskurs ist Teil einer Skriptenreihe der Trillium Akademie. Weitere Informationen
zum Kurs können Interessierte per Mail unter georg.hoffmann@trillium.de erfragen.

Zur Durchführung benötigt man einen PC/Laptop mit Zugang zum Internet, auf dem die beiden
kostenlosen Programme R und RStudio installiert werden können. Bei Computern, die in ein
Institutionsnetzwerk eingebunden sind, sind in der Regel Administratorrechte erforderlich
(Anfrage bei der IT-Abteilung).

Alle Beispiele in diesem Skript beziehen sich auf das Betriebssystem Windows ab Version 10 mit
deutscher Tastatur. Für andere Betriebssysteme (macOS, Linux) und andere Tastaturen gelten
Besonderheiten, die man bei Bedarf im Internet recherchieren kann. Hier sind drei Beispiele:

• Vor der Installation von R auf einem Apple-Rechner muss man das (ebenfalls kostenlose)
Hilfspaket XQuartz installieren.

• Die Taste Strg für “Steuerung” heißt auf der englischen Tastatur Ctrl für “Control”.
• Auf der Apple-Tastatur gibt es keine Tilde (~); für dieses in R wichtige Zeichen drückt

man die Tastenkombination Option (Alt) + n (Merkhilfe: n wie in Señorita), gefolgt von
einem Leerzeichen.

Allen, die wenig IT-Erfahrung haben, wird die Installation von R und RStudio auf einem Windows-
Rechner empfohlen.

Lektion 1

Hintergrund und Installation
Das Softwarewerkzeug R ist seit 1995 unter einer General Public License verfügbar. Mit der
Gründung des weltweiten Servernetzes Comprehensive R Archive Network CRAN im Jahr 1998
und der gemeinnützigen Stiftung R Foundation im Jahr 2002 begann der Siegeszug dieser
Software und Programmiersprache, insbesondere in der Welt der Statistik, der Bioinformatik und
den Data Sciences. Heute rangiert R konstant unter den zwanzig am häufigsten eingesetzten
Programmiersprachen.

Die gewaltige Funktionsbibliothek von R wird nicht zentral durch ein Unternehmen, sondern durch
Millionen von Nutzern unter der Kontrolle einer professionellen Kernmannschaft befüllt. Dies ist
der wohl wichtigste Grund für die weite Verbreitung von R. So wie Wikipedia kommerzielle
Enzyklopädien (Brockhaus, Encyclopedia Britannica) vom Markt verdrängt hat, stellt R für

file:///C:/Users/georg/Documents/EinfÃ¼hrung%20in%20R/EinfÃ¼hrung-R-erste-Schritte.html%23lektion1
file:///C:/Users/georg/Documents/EinfÃ¼hrung%20in%20R/EinfÃ¼hrung-R-erste-Schritte.html%23lektion2
file:///C:/Users/georg/Documents/EinfÃ¼hrung%20in%20R/EinfÃ¼hrung-R-erste-Schritte.html%23lektion3
file:///C:/Users/georg/Documents/EinfÃ¼hrung%20in%20R/EinfÃ¼hrung-R-erste-Schritte.html%23lektion4
https://www.trillium.de/akademie.html
mailto:georg.hoffmann@trillium.de
https://www.xquartz.org/
https://www.gnu.org/copyleft/gpl.html
https://cran.r-project.org/
https://www.r-project.org/foundation/

professionelle Statistikprogramme wie SPSS und SAS eine ernst zu nehmende Konkurrenz dar,
weil es nicht nur kostenlos, sondern auch viel umfangreicher und aktueller ist.

Wenn man in eine Suchmaschine einfach ein R eingebt, erhält man erwartungsgemäß
Abermillionen von Websites, in denen ein R vorkommt. Aber auf den vordersten Rängen
rangieren mit Sicherheit die Links zur Programmiersprache R und zum Download der Software
unter www.r-project.org. Sofort danach folgen viele Tutorials und Youtube-Videos für Einsteiger.

Installation und Test von R

Am schnellsten gelingt die Installation unter Windows folgendermaßen:

1. Download von einem Server in Deutschland aufrufen, z. B. ftp.gwdg.de/pub/misc/cran/ in
Göttingen.

2. Klick auf Download R for Windows und Install R for the first time.
3. Alle Voreinstellungen übernehmen (immer auf Weiter oder OK klicken).

Auf heutigen Rechnern empfiehlt sich die 64-Bit-Version. Ob man die deutsche oder englische
Version wählt, ist Geschmackssache. Im vorliegenden Skript verwende ich die englischen
Begriffe.

Wenn alles geklappt hat, kann man das Programm durch Klick auf das R-Icon starten. Ist das
Icon nicht zu sehen, dann sucht man im Programmordner unter R/bin/ nach RGui.exe.

Als ersten Funktionstest geben wir beim blinkenden Cursor folgende Zeile ein (ob mit oder ohne
Leerzeichen, ist egal):

1 : 50

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

[26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Nach dem Drücken auf Enter erhält man die Zahlen 1 bis 50 (der Doppelpunkt steht in R für bis).
Am Zeilenanfang steht jeweils zur besseren Orientierung die laufende Nummer. Wer gleich
einmal ein bisschen spielen will, erhält mit log(1:10) die natürlichen Logarithmen der Zahlen von 1
bis 10 und mit boxplot(200:300) eine sog. Kastengrafik (engl. boxplot).

Zum Beenden kann man einfach das x rechts oben anklicken. Die Frage nach dem Speichern
beantworten wir mit Nein.

Installation und Test von RStudio

Die Benutzeroberfläche von R reicht für einfache Befehle aus, ist aber für größere Aufgaben zu
spartanisch. Deshalb installieren wir nun auch noch die integrierte Entwicklungsumgebung
RStudio, die seit 2011 verfügbar ist. Die URL heißt www.rstudio.com. Hier wählen wir die
kostenlose Basisversion RStudio Desktop für unser Betriebssystem aus und akzeptieren wieder
alle Voreinstellungen mit Weiter und OK.

Auch für RStudio findet sich nach erfolgreicher Installation ein Icon auf dem Bildschirm, mit dem
man das Programm starten kann. Wenn das Icon nicht zu sehen ist, kann man im
Programmordner unter RStudio/bin/ nach rstudio.exe suchen. RStudio greift im Hintergrund auf R
zu, ohne dass man R dafür eigens öffnen muss.

Die Benutzeroberfläche von RStudio ist deutlich reichhaltiger als die von R. Sie besteht aus einer
Menüleiste (File, Edit usw.) und vier Fenstern. Falls nur drei Fenster zu sehen sind (ein großes
links, zwei kleinere rechts), muss man das linke Fenster halb groß machen. Das linke obere
Fenster heißt Editorfenster und trägt den vorläufigen Namen Untitled1. Hier kann man R-
Befehle eingeben und laufen lassen.

Zum Testen geben wir links oben wieder 1 : 50 ein. Mit der Tastenkombination Strg + Enter wird
dieser Befehl in das linke untere Fenster, die sog. Konsole kopiert und ausgeführt. Wir erhalten
wie schon beim obigen Test von R die Zahlenreihe 1 bis 50.

https://de.wikipedia.org/wiki/R_(Programmiersprache)
https://www.r-project.org/
https://ftp.gwdg.de/pub/misc/cran/
https://de.wikipedia.org/wiki/RStudio
https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/#download

Als nächstes geben wir folgende drei Zeilen ein und drücken am Zeilenende nur Enter (ohne
Strg):

a = 5

b = 10

summe = a + b

Man kann nun alle drei Zeilen markieren und wahlweise wieder Strg + Enter drücken oder auf
Run (direkt über dem Editor-Fenster) klicken. Nun erscheinen im Fenster rechts oben die Namen
a, b und summe der soeben erzeugten drei Variablen mit den Werten 5, 10 und 15.

Hinweis: Es gibt in R verschiedene Methoden, um einer Variablen Werte zuzuweisen; wir
verwenden hier das Gleichheitszeichen, weil es besonders intuitiv ist. Weitere Möglichkeiten
behandeln wir in einem späteren Skript.

Schließlich geben wir im Editorfenster eine weitere Zeile boxplot(200 : 300) ein und lassen sie
laufen. Nun erscheint im Fenster rechts unten eine Kastengrafik. Durch Klick auf Export (direkt
über der Grafik) kann man das Bild in verschiedenen Formaten (png, jpg, pdf usw.) speichern –
oder auch in die Zwischenablage kopieren (Copy to Clipboard), um es beispielsweise in eine
Word- oder Powerpoint-Datei einzufügen.

Bevor wir diese Lektion beenden, wollen wir unser erstes R-Programm speichern. Man wählt
dazu im Menü unter File den Punkt Save oder drückt Strg + s. Die Frage nach dem Dateiformat
beantworten wir mit UTF-8, damit deutsche Umlaute korrekt angezeigt werden. Als Dateinamen
geben wir z. B. Test ein; das Programm wird dann als Test.R gespeichert, und dieser Name
erscheint auch anstelle von Untitled1 auf dem Reiter des Editorfensters. Nun kann man RStudio
mit dem x rechts oben schließen und die Frage nach dem Speichern wieder mit Nein
beantworten.

Hinweis: Wenn man nachträglich feststellt, dass Umlaute nicht korrekt dargestellt werden, weil
man das Format UTF-8 nicht eingestellt hat, kann man dies jederzeit nachholen, indem man im
Menü unter File den Punkt Save with Encoding wählt.

Fragen und Aufgaben zu Lektion 1

1. Wodurch unterscheidet sich R grundsätzlich von kommerziellen Statistikpaketen wie zum
Beispiel SPSS?

2. Wo findet man unter Windows die ausführbaren Programm R und RStudio, wenn man die
Icons versehentlich vom Bildschirm gelöscht hat?

3. Nenne für jedes der vier Fenster von RStudio eine typische Verwendung.
4. Starte RStudio neu, indem du die gespeicherte Datei Test.R doppelklickst. Füge weitere

Programmzeilen hinzu (zum Beispiel für das Produkt der Variablen a und b) und
speichere das Programm erneut ab.

Lektion 2

Rechnen auf der R-Konsole
Für einfache Aufgaben, die nicht gespeichert werden sollen, genügt die R-Konsole, also das
Fenster links unten. Diese Oberfläche erhält man auch, wenn man statt RStudio nur R öffnet,
aber es empfiehlt sich, bevorzugt mit RStudio zu arbeiten, da diese Oberfläche mehr Komfort
bietet.

Beim Start wird auf der Konsole ein Text angezeigt, den wir in aller Regel einfach löschen
(Edit>>Clear Console oder Strg + L oder Klick auf die kleine Bürste rechts über der Konsole). Aus
dem Text geht unter anderem hervor, welche R-Version installiert ist. Das kann wichtig sein,

wenn ein R-Programm eine bestimmte Version voraussetzt und gegebenenfalls ein Update
benötigt. Um eine Anleitung für Updates zu erhalten, sucht man am besten im Internet nach “R
Update”. Hier ist die Kurzversion für diejenigen, die mit R schon etwas vertraut sind:

if(!require(installr)) {install.packages("installr")}

library(installr)

updateR()

Die Konsole ist ein einfacher Kommandozeilen-Editor, der in erster Linie mit der Tastatur und
nicht mit der Maus bedient wird. Für Ungeübte ist der Gebrauch gewöhnungsbedürftig, aber
wenn man das Prinzip einmal verstanden hat, wird man die schnelle und einfache Handhabung
zu schätzen wissen: Man tippt eine Befehlszeile wie z. B. boxplot(1:100) ein, drückt Enter und
erhält sofort das Ergebnis.

In dieser Lektion wollen wir die Konsole für einfache Berechnungen nutzen und bei dieser
Gelegenheit den Gebrauch der Rechenoperatoren von R kennenlernen. Diese sind wie in
praktisch allen Programmiersprachen Plus, Minus, Stern und Schrägstrich (Backslash) für die
Grundrechenarten, das Hütchen ^ für die Potenzrechnung und runde Klammern für die
Zusammenfassung von Rechenausdrücken.Das Hütchen (accent circonflex) erhält man, indem
man die Taste links oben unter Esc und anschließend die Leertaste drückt.

Hier sind einige Beispiele zum Ausprobieren:

• 2 + 5

• 2 - 5
• 2 * 5
• 2 / 5
• 2 ^ 5
• (2 + 5) ^ 2

Die Ergebnisse werden unmittelbar unter der Eingabe ausgegeben. Davor steht die
Zeilennummer [1], weil es für jede Rechenoperation nur eine einzige Ausgabezeile gibt. Eine
mehrzeilige Ausgabe wäre zum Beispiel:

(1 : 20) ^ 2 / 7

[1] 0.1428571 0.5714286 1.2857143 2.2857143 3.5714286 5.1428571

[7] 7.0000000 9.1428571 11.5714286 14.2857143 17.2857143 20.5714286

[13] 24.1428571 28.0000000 32.1428571 36.5714286 41.2857143 46.2857143

[19] 51.5714286 57.1428571

Man beachte noch einmal den Unterschied zwischen Schrägstrich und Doppelpunkt: Das
Zeichen : steht in R nicht für dividiert durch, sondern für bis. Hier wurden die Zahlen 1 bis 20
quadriert und die Ergebnisse durch 7 dividiert. Wie man an den Ergebnissen sieht, muss man in
R anstelle des deutschen Dezimalkommas immer den Dezimalpunkt verwenden.

Komplexere Berechnungen führt man mithilfe von Funktionen aus. Dazu tippt man den
Funktionsnamen ein, gefolgt von runden Klammern, in denen steht, worauf die Funktion
angewendet werden soll. Wir schreiben zum Beispiel für die Wurzel aus 10:

sqrt(10)

[1] 3.162278

Die meisten Funktionsnamen für Rechenoperationen sind selbsterklärend:

Rechenoperation R-Funktion Beispiel

Wurzel sqrt sqrt(4)

Mittelwert mean mean(1:10)

Median median median(1:10)

natürlicher Logarithmus log log(10)

dekadischer Logarithmus log10 log10(10)

Exponentialfunktion exp exp(1)

Sinus sin sin(pi/2)

Man muss das aber nicht auswendig lernen, sondern kann die gewünschte Rechenoperation im
Internet suchen, indem man davor den Buchstaben r eintippt, also z. B. r wurzel ziehen. Hat man
den richtigen Begriff gefunden, kann man sich zusätzlich spezifische Informationen von R
ausgeben lassen, indem man auf der Konsole ein Fragezeichen und den Funktionsnamen
eingibt, also z. B. ?sqrt.

Und zuletzt kommen hier noch zwei Tricks, um sich auf der Konsole Tipparbeit zu sparen:

• Man kann den letzten eingebenen Befehl wiederholen, indem man auf die Pfeiltaste nach
oben (PageUp) drückt. Das ist bei längeren Ausdrücken nützlich, die man modifizieren
möchte (z. B. wenn man sich vertippt hat).

• In RStudio erhält man nach dem Eintippen der ersten drei Buchstaben eines
Funktionsnamens passende Vorschläge, aus denen man mit der TAB-Taste oder
Doppelklick den richtigen auswählen kann. Diese Möglichkeit sollte man grundsätzlich
nutzen, um sich vor Tippfehlern zu schützen.

Fragen und Aufgaben zu Lektion 2

1. Wofür eignet sich die Konsole von R im Vergleich zum Editorfenster besonders gut?
2. Wieviele verschiedene Möglichkeiten gibt es, um den Inhalt der Konsole zu löschen?
3. Berechne deinen Body Mass Index nach der Formel Gewicht (in kg) dividiert durch Größe

(in m) zum Quadrat.
4. Berechne die dekadischen Logarithmen der Zahlen 5 bis 10.
5. Gib die geraden Zahlen von 2 bis 20 auf der Konsole aus.
6. Warum gibt die Funktion sqrt(2,7) eine Fehlermeldung aus?
7. Wie heißt die R-Funktion zur Berechnung der Standardabweichung?
8. Berechne Mittelwert und Standardabweichung der Zahlenreihe 7 bis 17.

Lektion 3

Daten erzeugen und verarbeiten
Statistik ist die Lehre vom Umgang mit quantitativen Daten, also mit zählbaren oder messbaren
Beobachtungen. In dieser Lektion lernen wir, wie man Daten mithilfe von R-Funktionen erzeugt
und manipuliert, speichert und wieder einliest.

Am besten legt man für diese Übung ein neues R-Skript an (Menü File oder Tastenkombination
Strg + Umschalt + n).

https://de.wikibooks.org/wiki/GNU_R:_Rechnen_mit_R
https://de.wikipedia.org/wiki/Statistik
https://de.wikipedia.org/wiki/Daten

Datenreihen (Vektoren)

Die einfachste Form, quantitative Daten für statistische Auswertungen zu generieren, kennen wir
bereits: Mithilfe des Doppelpunkts haben wir fortlaufende Reihen ganzer Zahlen erzeugt (z. B. 1 :
100). Diese kann man durch Rechenformeln auf vielfältige Weise weiterverarbeiten. Zum Beispiel
erhält man durch Multiplikation mit 2 lauter gerade Zahlen.

Solche systematischen Zahlensequenzen kann man komfortabler und flexibler mit der Funktion
seq erzeugen. Für die ungeraden Zahlen von 1 bis 11 geben wir beispielsweise den folgenden
Code in das Editorfenster ein:

seq(from = 1, to = 11, by = 2)

[1] 1 3 5 7 9 11

Um beliebige Daten wie zum Beispiel die Ergebnisse einer Messreihe aneinander zu reihen, gibt
es in R die Funktion c() für combine.

Größe = c(1.74, 1.64, 1.92)

Gewicht = c(70, 75, 100)

Diese Zahlenreihen (sog. Vektoren) kann man nun komfortabel weiter verarbeiten, z. B. um den
Body Mass Index zu berechnen:

Gewicht / Größe ^2

[1] 23.12062 27.88519 27.12674

Praxistipp: Mit dem Suchbegriff r zahlen runden finden wir im Internet die R-Funktion round(), in
der man die Anzahl der gewünschten Nachkommastellen mit dem Schlüsselwort digits angeben
kann:

BMI = round(Gewicht / Größe ^2, digits = 1)

BMI

[1] 23.1 27.9 27.1

Tabellen (Matrizen)

Neben eindimensionalen Vektoren verwendet man für statistische Auswertungen sehr häufig
zweidimensionale Tabellen, sog. Matrizen. Als Anwendungsbeispiel fügen wir unsere drei
Vektoren zu einer Matrix mit je 3 Spalten und Zeilen zusammen. Dafür gibt es die Funktionen
cbind und rbind (c und r steht hier für columns bzw. rows).

tab1 = cbind(Größe, Gewicht, BMI)

tab2 = rbind(Größe, Gewicht, BMI)

tab1

Größe Gewicht BMI

[1,] 1.74 70 23.1

[2,] 1.64 75 27.9

[3,] 1.92 100 27.1

tab2

[,1] [,2] [,3]

Größe 1.74 1.64 1.92

Gewicht 70.00 75.00 100.00

BMI 23.10 27.90 27.10

Im ersten Fall sind die beiden Vektoren spaltenweise, im zweiten Fall zeilenweise angeordnet.

Anstelle von Zahlen kann man mit der Funktion c() auch Wörter zu Vektoren kombinieren.
Wichtig ist hierbei, dass man die Textinhalte (sog. strings) in Anführungszeichen schreibt. So
können wir beispielsweise die Tabelle tab1 mit Zeilennamen versehen:

rownames(tab1) = c("Lukas", "Anna", "Markus")

tab1

Größe Gewicht BMI

Lukas 1.74 70 23.1

Anna 1.64 75 27.9

Markus 1.92 100 27.1

Wie man sieht, wurden die Spaltennamen automatisch aus den Variablennamen übernommen.
Mit der Funktion colnames() kann man die Spaltennamen auch gezielt festlegen bzw.
überschreiben.

colnames(tab1) = c("Größe (m)", "Gewicht (kg)", "Body Mass Index")

tab1

Größe (m) Gewicht (kg) Body Mass Index

Lukas 1.74 70 23.1

Anna 1.64 75 27.9

Markus 1.92 100 27.1

Daten speichern

Zum Abschluss dieser Lektion speichern wir die Tabelle ab, um sie zu einem späteren Zeitpunkt
mit R (oder einem anderen Programm wie etwa Excel) wieder einlesen zu können. Bevor wir das
tun, sollten wir das “Arbeitsverzeichnis” (working directory) festlegen, in das wir die Datei
speichern wollen, um sie leichter wiederzufinden. Das geht am sichersten über den Menüpunkt
Session >> Set Working Directory >> Choose Directory. Hier wählt man das gewünschte
Verzeichnis aus und klickt auf Open. Auf der Konsole wird die Funktion setwd (für set working
directory) mit dem korrekten Pfad angezeigt und ausgeführt. Mit dem Befehl getwd() kann man
sich davon überzeugen, dass es geklappt hat.

Praxistipp: Diese getwd-Zeile kann man auch aus der Konsole an den Anfang des Programms im
Editorfenster kopieren, sodass bei erneutem Programmaufruf immer gleich das richtige
Verzeichnis eingestellt wird.

Zum Speichern von Daten gibt es in R verschiedene Befehle, je nachdem in welchem Format die
Speicherung erfolgen soll. Für eine Übersicht geben wir auf der Konsole ?write.table ein. Das
universellste Format zum Datenaustausch zwischen verschiedenen Programm ist .csv
(character-separated variables), ein Textformat, das standardmäßig als Spaltentrennzeichen das
Komma verwendet. In Deutschland, wo das Komma bereits für das Dezimalkomma vergeben ist,
empfiehlt sich das Format csv2 mit einem Semikolon als Spaltentrenner.

Wir wählen hier also den Befehl write.csv2 in folgender Form:

write.csv2(tab1, file = "BMI.csv")

Hinweis: Wer eine internationale Ländereinstellung verwendet, lässt einfach die 2 weg: write.csv.

Wenn dieser Befehl erfolgreich ausgeführt wurde, sollte sich im gewünschten Arbeitsverzeichnis
eine Datei namens BMI.csv befinden, die man über die rechte Maustaste mit verschiedenen
Programmen wie zum Beispiel Excel öffnen und weiterbearbeiten kann.

Wenn man nun RStudio schließt und zu einem späteren Zeitpunkt wieder öffnet, kann man diese
Datei erneut einlesen und mit R-Befehlen weiterverarbeiten. Die einfachste unter vielen Varianten
zum Lesen von csv-Dateien ist der Befehl tab1 = read.csv2(file.choose()). Damit öffnet sich das
Browserfenster von Windows; notfalls muss man es mit einem Klick auf das Browser-Icon in der
Task-Leiste in voller Größe anzeigen. Man kann dann das csv-File in die Variable tab1 einlesen.
Statt tab1 ist natürlich auch jeder andere Variablenname (z. B. x oder dat) zulässig.

Hinweis: Anstelle von file.choose() kann man auch wie oben erläutert das richtige
Arbeitsverzeichnis mit setwd() bzw. dem Menüpunkt Session>>Set Working Directory>>Choose
Directory einstellen und den gewünschten Dateinamen direkt in Anführungszeichen eingeben
(hier also “BMI.csv”). Das erspart das Öffnen des Browsers, aber man muss dafür auch sicher
sein, den richtigen Dateinamen anzugeben, sonst erhält man eine Fehlermeldung (cannot open
the connection).

Auch diese Lektion speichern wir mit Strg + s unter einem geeigneten Namen.

Fragen und Aufgaben zu Lektion 3

1. Was muss man bei der Eingabe von Strings (im Gegensatz zu Zahlenwerten) besonders
beachten?

2. Wofür steht der Name csv und wofür wird dieses Dateiformat bevorzugt verwendet?
3. Erzeuge mit der Funktion seq eine Zahlensequenz 70, 80, … 130 und weise sie der

Variablen x1 zu.
4. Dividiere alle Elemente von x1 durch 18 und weise das Ergebnis der Variablen x2 zu.

Freaks können das Ergebnis auch noch auf zwei Nachkommastellen runden.
5. Füge beide Vektoren mit der Funktion cbind zu einer Tabelle namens BZ zusammen.
6. Erzeuge mit der Funktion c (für combine) einen Vektor aus den beiden Begriffen mg/dl

und mmol/l und verwende diese mithilfe von colnames(BZ) als Spaltennamen für die
Tabelle BZ.

7. Verwende die Zahlenreihe 1 bis 7 mithilfe von rownames(BZ) als Zeilennamen der
Tabelle.

8. Speichere die Tabelle BZ unter dem Namen Blutzucker.csv ab und öffne die gespeicherte
Datei mit Excel.

9. Zwei Aufgaben für Excel-Fans: Füge in Excel weitere Zeilen mit Werten hinzu und
speichere die Tabelle wieder im csv-Format ab (Speichern unter >> Dateityp CSV).

10. Lies diese Tabelle erneut mit R ein und zeige sie auf der Konsole an.

Lektion 4

Grafiken erzeugen und formatieren
Grafische Darstellungen gehören zu den besonderen Stärken von R. Wie wir bereits gesehen
haben, genügt häufig eine einzige, kurze Befehlszeile wie z. B. boxplot(1:100), um eine
instruktive Abbildung zu erzeugen, Mit wenigen zusätzlichen Angaben kann man die Achsen
beschriften, Farben festlegen, Texte einfügen usw. Wir erstellen ein neues R-Skript und tippen in
das Editorfenster eine erweiterte Boxplot-Funktion ein:

boxplot(x = c(100 : 200, 350), main = "Boxplot", ylab = "künstlich erzeugte Messwer

te", col = "lightblue")

grid()

text(x = 1, y = 160, "Median")

Diese kleine Grafik demonstriert auf einen Blick eine ganze Reihe wichtiger Aussagen zu R:

• Den Grafiktyp legt man mit einem geeigneten (häufig selbsterklärenden) Funktionsnamen
wie z. B. boxplot fest. Andere Funktionsnamen sind plot (xy-Diagramm), barplot
(Balkendiagramm), hist (Histogramm) usw.

• In der Klammer wird angegeben, aus welchen Werten die Grafik erzeugt werden soll.
• Dahinter folgen – durch Kommas abgetrennt – weitere Parameter der Grafikfunktion, z. B.

main für die Überschrift oder col für die Farbe.
• Weitere Grafikelemente wie etwa Texte oder Gitternetzlinien können in separaten Zeilen

hinzugefügt werden. Der Text “Median” wurde hier zum Beispiel in der Position x = 1 und
y = 160 eingefügt.

Ganz nebenbei sei an dieser Stelle angemerkt, dass der Boxplot zu den leistungsfähigsten
Grafiken der deskriptiven Statistik gehört, um sich einen schnellen Überlick über einen Datensatz
zu verschaffen. Er besteht aus einer “Box”, die die zentralen 50 % aller Werte enthält (in unserem
Fall also die Zahlen zwischen 125 und 175). Im Inneren der Box befindet sich ein dicker Strich,
der die untere Hälfte der Daten von der oberen trennt; dieser Grenzwert heißt Median. Schließlich
gibt es noch zwei “Antennen” (engl. Whiskers für Schnurrbarthaare), die den gesamten
Wertebereich umfassen. Etwaige Ausreißer, die nicht zur Verteilung der Werte passen, werden
als separate Punkte dargestellt; hier ist dies der Wert 350, den wir den Daten mit der Funktion c()
hinzugefügt haben.

Die enorme Vielfalt der grafischen Möglichkeiten von R würde den Rahmen dieser kurzen
Einführung sprengen. Selbstverständlich gibt es für jeden Grafiktyp spezifische Parameter, mit
denen man das Erscheinungsbild beeinflussen kann. Zusätzlich zu den Grafikfunktionen der
Basisversion von R kann man große Zusatzpakete wie etwa ggplot2 laden, die
hochprofessionelle Darstellungen ermöglichen. Wer sich hier Überblick verschaffen möchte,
sucht am besten im Internet nach Begriffen wie Grafiken mit R oder Grafiken mit ggplot.

Ich möchte hier am Beispiel eines einfachen xy-Diagramms noch einmal die Grundfunktionen
demonstrieren, die in den meisten Grafikanwendungen von R zur Anwendung kommen. Dazu
erzeugen wir zwei Datensätze x und y, die aus Zufallszahlen bestehen. Dafür setzen wir die
Funktionen rnorm und runif ein; das r steht hier für random (Zufall) und der Rest des Namens für
den Verteilungstyp (Normal- bzw. Gleichverteilung).

x = runif(n = 200, min = 20, max = 80)

y = rnorm(n = 200, mean = 2.4, sd = 0.1)

Wer sich für die Details dieser Funktionen interessiert, kann auf der Konsole ?runif() und ?rnorm()
eingeben. Dort sieht man auch gleich, welche weiteren Funktionen es zu den beiden
Verteilungstypen sonst noch gibt; so kann man mit dnorm zum Beispiel die berühmte Gauß’sche
Glockenkurve konstruieren, wobei das d für die Dichte steht.

Der Vektor x soll hier für ein gleichmäßig verteiltes Alter von gesunden Probanden stehen und
der Vektor y für normalverteilte Calciumwerte mit einem Referenzintervall von etwa 2.2 bis 2.6
mmol/l. Wir runden also die beiden soeben erzeugten Vektoren auf 0 bzw. 2 Nachkommastellen
und geben ihnen sprechende Namen.

Alter = round(x, digits = 0)

Calcium = round(y, digits = 2)

Den Erfolg sehen wir im Fenster rechts oben (Global Environment): Es gibt nun sowohl die
Variablen x und y als auch Alter und Calcium. Daraus erzeugen wir nun mit dem Befehl plot eine
einfache xy-Grafik:

plot(x = Alter, y = Calcium)

Einfacher geht’s wohl nicht. Im nächsten Schritt fügen wir analog zur obigen Boxplot-Funktion
Achsenbeschriftungen “Alter (Jahre)” und “Calcium (mmol/l)” hinzu, färben die Punkte rot und
fügen ein Gitternetz ein.

Wenn man auf der Konsole ?plot() eingibt, erhält man unter den weiterführenden Links The
Default Scatterplot Function und Generic X-Y-Plotting eine Vielzahl weiterer Parameter, die das
Aussehen der Grafik beeinflussen. Hier findet sich beispielsweise unter Points der wichtige
Parameter pch, mit dem man die Form der Symbole verändern kann. pch = 19 erzeugt
ausgefüllte Punkte, pch = 23 umrandete Rauten usw. Mit xlim und ylim kann man die Grenzen
der x- und y-Achse festlegen. Trägt man beispielsweise xlim = c(0, 100) ein, geht die x-Achse
von 0 bis 100 Jahre. Um den Code übersichtlich zu halten, kann man nach den Kommas
jederzeit Zeilenumbrüche einfügen. Sie werden von R ebenso wie Leerzeichen im Code einfach
ignoriert.

plot(Alter, Calcium,

 xlim = c(0, 100),

 xlab = "Alter (Jahre)", ylab = "Calcium (mmol/l)",

 col = "red", pch = 17)

grid()

Zum Abschluss dieser kleinen Übung und zur Wiederholung des bisher Gelernten speichern wir
die Grafik als PDF-File ab, fügen die beiden Vektoren Alter und Calcium zu einer Tabelle mit
einem frei gewählten Variablennamen zusammen und speichern sie als csv-File ab. Danach
können wir auch diese Lektion 4 als R-File speichern und RStudio schließen.

Fragen und Aufgaben zu Lektion 4

1. Was bedeutet der Buchstabe r in den Funktionsnamen runif und rnorm?
2. Schließe das Programm der Lektion 4, rufe es erneut auf und erstelle aus den

Calciumwerten anstelle des xy-Diagramms einen Boxplot. Beschrifte die Grafik und
erkläre die Elemente Box und Whiskers.

3. Erzeuge nach dem Vorbild von Calcium mit der Funktion rnorm 500 normalverteilte
Kaliumwerte (mean = 4.4, sd = 0.4) und erstelle daraus ein xy-Diagramm mit dem Alter
auf der x-Achse. Beschrifte das Diagramm und füge ein Gitternetz ein.

4. Erstelle aus den Kaliumwerten ein Histogramm mit der Funktion hist.
5. Für Grafikfreaks: Beschrifte das Histogramm mit sinnvollen deutschen Begriffen und färbe

es hellgrün. Finde mit ?hist heraus, wie man die Farbe der Rahmenlinien verändert.

