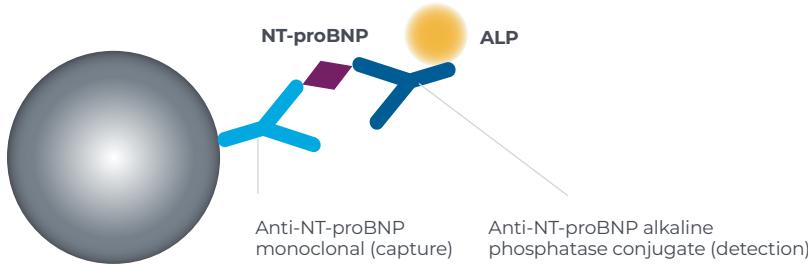


Access NT-proBNP

Efficiently support diagnosis and assessment of heart failure severity with trustworthy results

Background

An estimated 26 million patients globally have heart failure,¹ and its prevalence continues to rise. An aging population, increases in cardiovascular risk factors and improved survival of cardiovascular conditions have all contributed to the increase in heart failure cases.² Fortunately, early diagnosis and intervention in heart failure patients may help to prevent the development of symptoms and improve survival.³⁻⁵ Diagnostic biomarkers play a critical role in early diagnosis and intervention.


B-type natriuretic peptide (BNP) and the N-terminal (NT)-pro hormone BNP (NT-proBNP) are well established for use in diagnosis of heart failure and are included in standard of care guidelines for both the American College of Cardiology/American Heart Association (ACC/AHA)⁶ and European Society of Cardiology (ESC).⁷ Testing of natriuretic peptide biomarkers adds value to clinical judgement and has demonstrated benefit when used in both emergency and outpatient settings.

NT-proBNP, like BNP, aids in diagnosis, risk stratification and severity assessment for heart failure; it supports decision making across every stage of heart failure care.

Test principle

The human NT-proBNP binds to the anti-NT-proBNP antibody on the solid phase, while the anti-NT-proBNP antibody-alkaline phosphatase conjugate reacts with a different antigenic site on the NT-proBNP molecule.

Assay Features and Benefits

- Gain confidence in interpreting test results with an assay that is backed by an up-to-date prospective clinical trial supporting use of guideline-directed cutoffs
- Obtain specific information that supports interpretation of NT-proBNP levels in individuals with comorbidities
- Increase accuracy in diagnosing heart failure with age-based cutoffs that improve specificity by 31% compared to a single cutoff strategy
- Save time with rapid results (under 11 minutes on the Dxl 9000 Analyzer)

Heart failure affects **~26 million** people globally¹

50% of patients are readmitted to the hospital within 6 months of discharge²

9.91 million years lost due to disability⁸

Current worldwide economic burden of heart failure

\$346.17 billion USD⁸

45-60% of heart failure deaths occur within five years of first hospital admission²

Access NT-proBNP is available for use on the Dxl 9000 Access Immunoassay Analyzer

Characteristics

System compatibility	Dxi 9000 Immunoassay Analyzer
Sample Type/Size	Serum, plasma (lithium heparin, EDTA) Sample Size: 55 µL
Sample Stability	15-25°C (room temperature): 72 hours 2-10°C: 6 days
Analytical Measuring Range	Approximately 10.0-35,000 ng/L (pg/mL) Automated dilution: Up to approximately 350,000 ng/L (pg/mL)
Limit of Detection (LoD)	≤10.0 ng/L (pg/mL)
20% CV Limit of Quantitation (LoQ)	≤10.0 ng/L (pg/mL)
Imprecision	Within-laboratory imprecision: ≤4.0 ng/L (pg/mL) SD at concentrations ≤50 ng/L (pg/mL) ≤8.0% CV at concentrations >50 ng/L (pg/mL)
Rule-out cutoff for Heart Failure (age-independent)	300 ng/L
Rule-in cutoffs for Heart Failure (age-dependent)	<50 years old: ≥450 ng/L (pg/mL) 50-75 years old: ≥900 ng/L (pg/mL) >75 years old: ≥1,800 ng/L (pg/mL)
Open Pack Stability	61 days
Calibration Stability	61 days
Open Calibrator Stability	64 days
Time to First Result	≤11 minutes
Approximate Calibrator Levels	Provided at zero and approximately 60, 300, 1,200, 4,000, 12,000 and 35,000 ng/L (pg/mL)

Ordering Information

Item Description	Size	Reference Number
Access NT-proBNP	2 reagent packs, 100 tests/pack	C71977
Access NT-proBNP Calibrators	SO-S6: 1 vial/level, 1.5 mL/vial	C71978

For questions, please contact your local Beckman Coulter representative or visit BeckmanCoulter.com/NTpro

References

1. Agnosi F. Heart Failure in the United States. Cardiology Advisor. Published online November 21, 2022.
2. Ferreira JP, Kraus S, Mitchell S, et al. World heart federation roadmap for heart failure. Glob Heart. 2019;14(3):197-214. doi:10.1016/j.ghert.2019.07.004
3. Creager MA. Early intervention in heart failure. Drugs. 1990;39 Suppl 4:4-9; discussion 22. doi:10.2165/00003495-199000394-00003
4. Mohan IK, Baba KSS, Iyapu R, Thirumalasetty S, Satish OS. Advances in congestive heart failure biomarkers. Adv Clin Chem. 2023;112:205-248. doi:10.1016/bs.acc.2022.09.005
5. Li Z, Song Y, Xing R, et al. Heat shock protein 70 acts as a potential biomarker for early diagnosis of heart failure. PLoS ONE. 2013;8(7):e67964. doi:10.1371/journal.pone.0067964
6. Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: executive summary: A report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines. Circulation. 2022;145(18):e876-e894. doi:10.1161/CIR.0000000000001062
7. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599-3726. doi:10.1093/eurheartj/ehab368
8. Lippi G, Sanchis-Gomar F. Global epidemiology and future trends of heart failure. AME Med J. 2020;5:15-15. doi:10.21037/amej.2020.03.03

© 2023 Beckman Coulter, Inc. All rights reserved. Beckman Coulter, the stylized logo, and the Beckman Coulter product and service marks mentioned herein are trademarks or registered trademarks of Beckman Coulter, Inc. in the United States and other countries. All other trademarks are the property of their respective owners.

For Beckman Coulter's worldwide office locations and phone numbers, please visit BeckmanCoulter.com/contact
DS-418900 | 2023-11470

