

Elevated Profiling, Accelerated Results

Agilent SureSelect Cancer Pan Heme assay

Key advantages

Deploy a rapid, turnkey solution with ease.

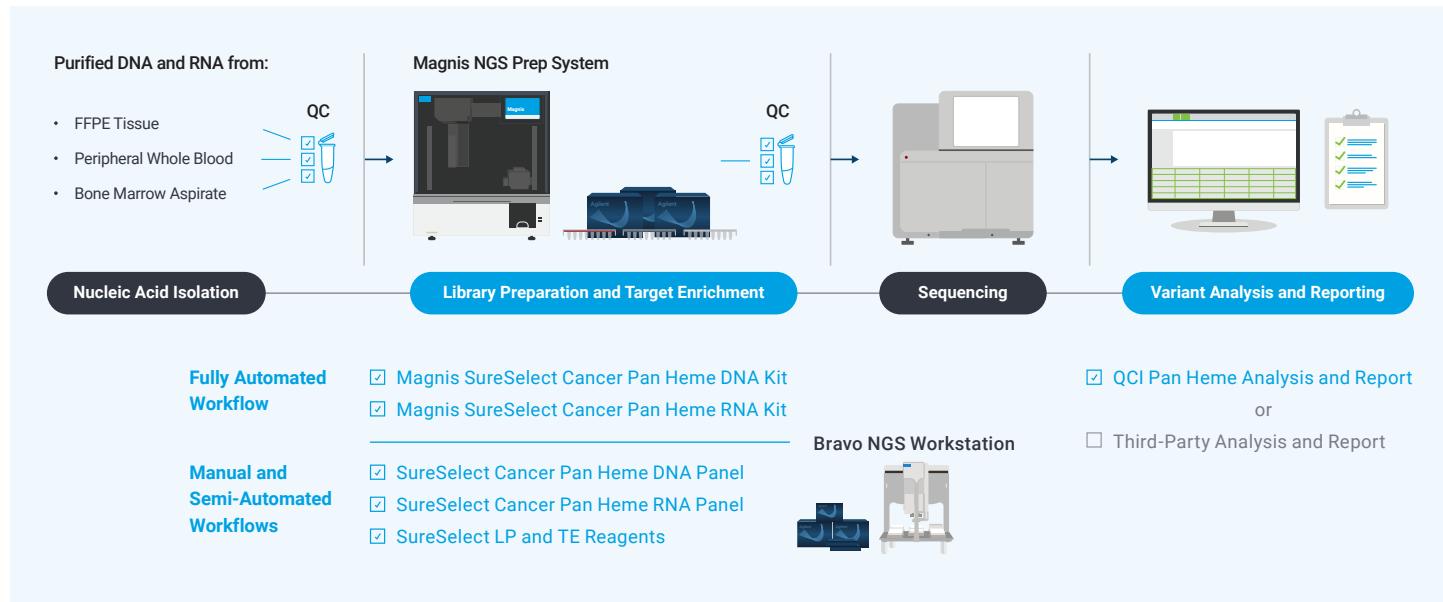
- **Fully automated workflow** with just 10 minutes of setup time
- **Integrated reporting** powered by QIAGEN Clinical Insight

Gain valuable insights.

- **Trusted panel content** curated by leading experts at Roswell Park Comprehensive Cancer Center
- **Comprehensive profiling** of over 350 DNA and 120 RNA genes to detect key variants and biomarkers, including *FLT3* internal tandem duplications (ITDs), *IGH* translocations, and chromosomal-, arm-, and gene-level CNVs

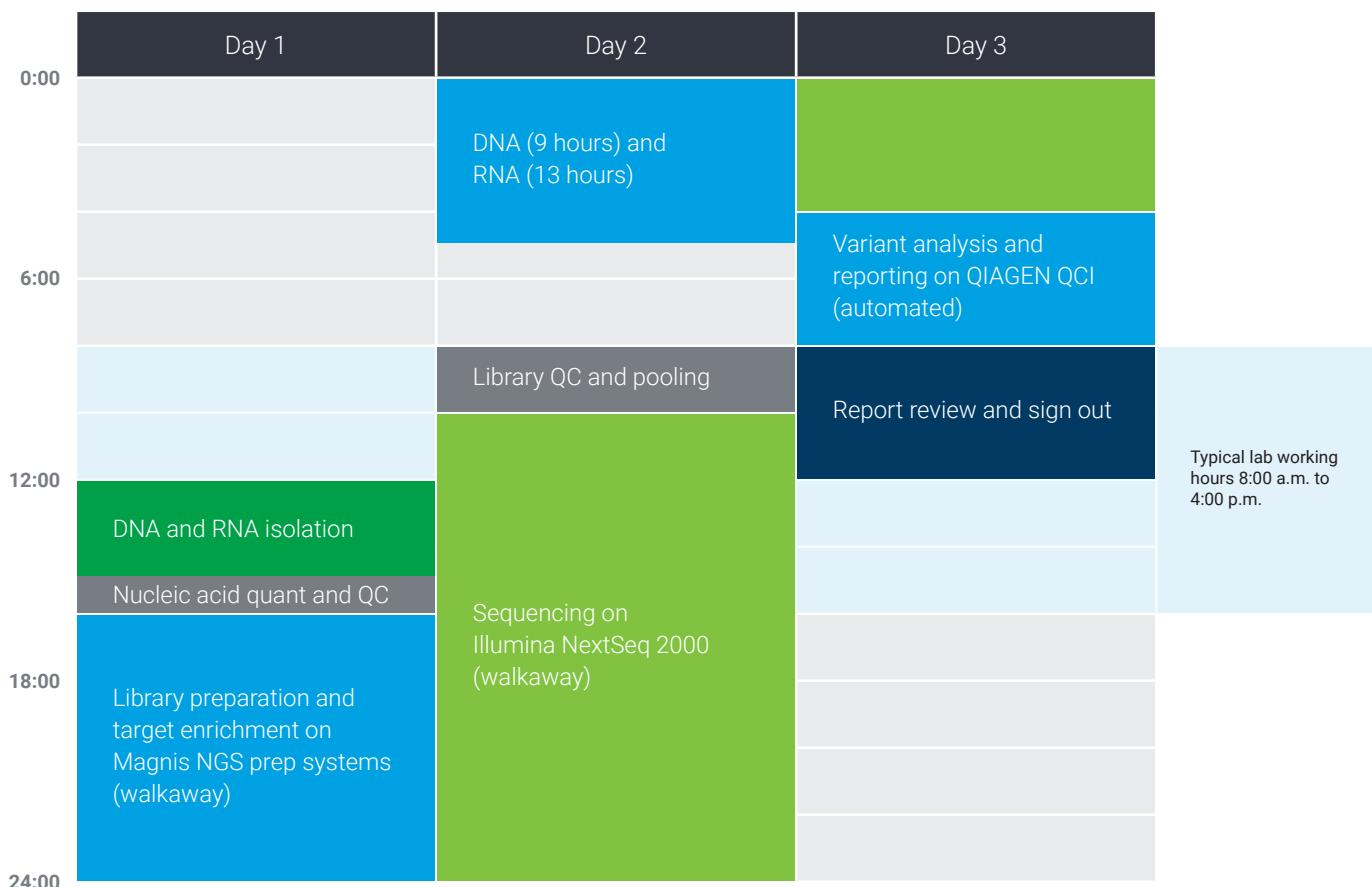
Introduction

The Agilent SureSelect Cancer Pan Heme assay delivers rapid, comprehensive genomic profiling (CGP) to support disease subtyping and uncover the molecular drivers of hematological malignancies. Arising from various stages of hematopoietic differentiation, these conditions, particularly in their acute forms, are highly aggressive and demand timely, accurate molecular insights.


Codeveloped in collaboration with leading hematology experts at Roswell Park Comprehensive Cancer Center, the SureSelect Cancer Pan Heme assay is a hybrid capture-based next-generation sequencing (NGS) assay that leverages deep expert insights for panel content curation and assay optimization. The assay interrogates 359 DNA genes and 124 RNA genes and detects all classes of genomic alterations, including single nucleotide variants (SNVs), insertions/deletions (indels), copy number variants (CNVs) of all sizes, *IGH* translocations, and gene fusions (Table 1). This assay provides comprehensive, integrated DNA and RNA analysis in a single workflow, effectively overcoming the limitations of conventional single-analyte methods such as karyotyping, FISH, and PCR.

When combined with automation on the Agilent Magnis NGS prep system and QIAGEN Clinical Insight (QCI) analysis, the SureSelect Cancer Pan Heme assay offers a cost-effective, easy-to-implement, and fast-turnaround solution for molecular labs.

Fully automated, sample-to-report CGP solution for hematologic malignancies


The complete assay features the Agilent Magnis SureSelect Cancer Pan Heme kits, paired with QIAGEN Clinical Insight (QCI), a fully optimized software platform for accurate variant calling, annotation, and reporting (Figure 1). Designed for efficiency, the Magnis kits include all necessary consumables and pre-aliquoted reagents for rapid setup on the Magnis

NGS prep system, enabling fully automated generation of target-enriched libraries in just 9 hours for DNA and 13 hours for RNA—with no human intervention. For labs using manual or semi-automated, high-throughput workflows, Agilent SureSelect Cancer Pan Heme panels, Agilent SureSelect library preparation reagents, and Agilent SureSelect target enrichment reagents are also available to support flexible deployment options (Figure 1).

Figure 1. Streamlined solution designed for easy, scalable, and cost-effective implementation. The Agilent SureSelect Cancer Pan Heme assay delivers a sample-to-report comprehensive genomic profiling (CGP) solution for hematologic malignancies. Following nucleic acid extraction and purification, library preparation and target enrichment are fully automated on the Agilent Magnis NGS prep system, generating target-enriched libraries in just 9 hours (DNA) or 13 hours (RNA), with no hands-on time. This enables faster turnaround time for the assay and frees up valuable staff resources. For higher-throughput needs, operations can be scaled by automating on the Agilent Bravo NGS workstation or by placing additional units of the Magnis system. Variant analysis and reporting are powered by QIAGEN Clinical Insight (QCI), which combines an expert-curated knowledge-base with optimized analysis pipelines and automated informatics workflows to deliver rapid, reliable results for the SureSelect Cancer Pan Heme assay.

Fast, reliable insights powered by automated chemistry and analysis

Figure 2. Accelerated turnaround time from sample to report. The Agilent SureSelect Cancer Pan Heme assay is powered by automated library preparation and target enrichment on the Agilent Magnis NGS prep system and by automated variant analysis, interpretation, and reporting through QIAGEN Clinical Insights. The automation empowers laboratories to easily bring the assay in-house, dramatically boost productivity, even during nonworking hours, and significantly reduce turnaround times. The timeline chart reflects the current assay implementation, from sample preparation to final report generation, at a CAP/CLIA-certified laboratory at Roswell Park Comprehensive Cancer Center. Here, results are delivered in just 48 hours—far faster than the typical 9- to 14-day turnaround of send-out services for pan-heme profiling. This rapid, automated workflow enables faster decision-making and delivers reliable insights with unmatched efficiency.

One assay for analyzing multiple variant types and biomarkers

Table 1. Comprehensive profiling enabled by the Agilent SureSelect Cancer Pan Heme assay. The assay interrogates both DNA and RNA to deliver a comprehensive analysis of multiple variant types and biomarkers associated with hematologic malignancies. The assay covers 359 genes in the DNA panel and 124 genes in the RNA panel, covering clinically relevant targets across key hematologic malignancies. This comprehensive approach eliminates the need for multiple or iterative testing, offering a future-proof solution for streamlined genomic profiling.

	DNA Panel	RNA Panel
Sample Type	Peripheral whole blood, bone marrow aspirate, FFPE tissue	Peripheral whole blood, bone marrow aspirate, FFPE tissue
Starting Input Amount	100 ng gDNA	100 ng total RNA
No. of Genes	359 genes	124 genes
Panel Size	4.16 Mb	2.62 Mb
Variants Detected*	<ul style="list-style-type: none"> - SNVs - Indels, including FLT3 ITDs up to 300 bp - CNVs, including gene-, cytoband-, arm-, and chromosomal-level changes - IGH translocations 	<ul style="list-style-type: none"> - Gene fusions
Sequencing Read Length	2 x 150 bp	2 x 150 bp
Recommended Sequencing Reads per Sample	≥ 24M PE reads	≥ 4M PE reads

* Variant detection supported by QIAGEN Clinical Insights

FFPE = formalin-fixed, paraffin-embedded; SNV = single nucleotide variant; PTD = partial tandem duplication; ITD = internal tandem duplication; CNV = copy number variant; PE = paired-end

Table 2. Sequencing throughput across platforms. The Agilent SureSelect Cancer Pan Heme assay supports 384 unique dual indexes, accommodating workflows of varying throughput levels. When automated on the Agilent Magnis NGS prep system, which processes up to 8 samples at a time, the assay aligns best with the Illumina NextSeq 550 Mid-Output and Illumina NextSeq 2000 P1 sequencing runs. This combination optimizes batching efficiency and minimizes turnaround time. The assay offers scalability for higher sample throughput by adding Magnis instruments or transitioning to automation on the Agilent Bravo NGS workstation. Further scalability can be achieved using higher-capacity sequencing systems and flow cells.

System and Flow Cell	DNA Only	RNA Only	DNA and RNA
Illumina NextSeq 550 Mid-Output (260M PE reads)	10 samples	65 samples	9 samples
Illumina NextSeq 550 High-Output (800M PE reads)	33 samples	200 samples	28 samples
Illumina NextSeq 2000 P1 (200M PE reads)	8 samples	50 samples	7 samples
Illumina NextSeq 2000 P2 (800M PE reads)	33 samples	200 samples	28 samples
Element AVITI Low Output (500M PE reads)	20 samples	125 samples	17 samples
Element AVITI Medium Output (1B PE reads)	41 samples	250 samples	35 samples

Note: Sequencing throughput is based on 24M paired-end (PE) reads per sample for the DNA only workflow, 4M PE reads per sample for the RNA only workflow, and 28M PE reads per sample for the DNA and RNA joint workflow. Care should be taken to account for variations in read distribution and nonusable reads.

Comprehensive profiling backed by expertly curated panel content

Table 3. DNA content included in the Agilent SureSelect Cancer Pan Heme DNA panel. The panel provides full coding region coverage of 356 genes relevant to hematologic malignancies. For TERT (orange cell), both the full coding region and promoter region are covered. For IGH, IGK, and IGL (pink cells), specific regions are covered to enable detection of nonchimeric structural rearrangements. The panel also includes a genome-wide SNP backbone that enables the detection of CNVs at the gene, cytoband, arm, and chromosomal levels.

ABL1	BRIP1	CDK6	DNMT3A	FBXO11	ID3	KMT2D	NFKB1	PIM2	RBM8A	SLAMF7	TINF2
ACD	BTG1	CDK7	DTX1	FBXW7	IDH1	KRAS	NFKB2	PIM3	RCOR1	SLC29A1	TLR2
AKT1	BTG2	CDKN1B	EBF1	FCRL5	IDH2	LCK	NFKB1A	PLCG1	REL	SLX4	TLR4
AKT2	BTK	CDKN2A	EFL1	FGFR1	IDH3A	LMO2	NFKB1E	PLCG2	RHOA	SMARCA4	TMEM30A
AKT3	CALR	CDKN2B	EGFR	FGFR2	IFNGR2	LTB	NFKB1Z	PMS2	RIT1	SMARCB1	TMSB4X
ALK	CARD11	CDKN2C	EGR1	FGFR3	IGF1R	LUC7L2	NHP2	POT1	ROCK1	SMC1A	TNF
ANKRD26	CASP8	CEBPA	EGR2	FLT3	IGH	MALT1	NOP10	POU2AF1	ROS1	SMC3	TNFAIP2
APC	CBFB	CHEK2	ELANE	FOXO1	IGK	MAP2K1	NOTCH1	POU2F2	RPL11	SOCS1	TNFAIP3
ARAF	CBL	CIITA	EP300	FYN	IGL	MAP2K4	NOTCH2	PPM1D	RPL35A	SOS1	TNFRSF14
ARID1A	CBLB	CKS1B	EPCAM	G6PC3	IKBKB	MAP3K1	NPM1	PRDM1	RPL5	SPARC	TNFRSF17
ARID1B	CBLC	CNOT3	EPHA7	GATA1	IKZF1	MAP3K14	NR3C1	PRKCB	RPS10	SPEN	TP53
ARID2	CCND1	CRBN	ERBB2	GATA2	IKZF3	MCL1	NRAS	PRPF8	RPS14	SPIB	TRAF2
ASXL1	CCND2	CREBBP	ERBB3	GATA3	IL2RG	MECOM	NSD2	PSMA1	RPS15	SRC	TRAF3
ASXL2	CCND3	CSF1R	ERCC4	GFI1	IL6	MED12	NTRK1	PSMB5	RPS19	SRP72	U2AF1
ATM	CCNE1	CSF3R	ETNK1	GNA13	IL6R	MEF2B	P2RY8	PSMD1	RPS24	SRSF2	U2AF2
ATRX	CCR4	CTC1	ETV6	GNAS	IL7R	MET	PALB2	PSMG2	RPS26	STAG2	UBA1
B2M	CCR6	CTCF	EZH2	GPR34	INO80	MGA	PAX5	PTCH1	RPS7	STAT3	UBE2A
BCL10	CCR7	CTNNB1	FANCA	GPRC5D	IRF1	MLH1	PDCD1LG2	PTEN	RTEL1	STAT5B	UBE2T
BCL11A	CD22	CUL4A	FANCB	GRB2	IRF4	MPEG1	PDGFRA	PTPN1	RUNX1	STAT6	UBR5
BCL2	CD274	CUL4B	FANCC	GTF2I	IRF8	MPL	PDGFRB	PTPN11	SAMD9	STK11	USB1
BCL6	CD28	CUX1	FANCD2	H1-2	ITPKB	MSH2	PDS5B	PTPN2	SAMD9L	SUZ12	VAV1
BCL7A	CD38	CXCR4	FANCE	H1-3	JAK1	MSH6	PHF6	PTPN6	SBDS	SYK	VPS45
BCOR	CD47	CYLD	FANCF	H1-4	JAK2	MTOR	PIGA	PTPRC	SBF2	TBL1XR1	WAS
BCORL1	CD58	DAPK1	FANCG	H1-5	JAK3	MYB	PIK3CA	PTPRD	SETBP1	TCF3	WRAP53
BIRC2	CD70	DCK	FANCI	H3C2	KDM6A	MYC	PIK3CB	RAD21	SETD2	TENT5C	WT1
BIRC3	CD79A	DDX3X	FANCL	HAX1	KIT	MYD88	PIK3CD	RAD51	SETDB1	TERC	XBP1
BLM	CD79B	DDX41	FAS	HLA-A	KLF2	NBN	PIK3CG	RAD51C	SF1	TERT	XPO1
BRAF	CD83	DHX15	FAT1	HLA-B	KLHL6	NF1	PIK3R1	RASA2	SF3B1	TET2	ZFP36L1
BRCA1	CDC25C	DIS3	FAT3	HLA-C	KMT2A	NF2	PIK3R2	RB1	SGK1	TGFBR2	ZRSR2
BRCA2	CDK4	DKC1	FAT4	HRAS	KMT2C	NFE2	PIM1	RBBP6	SH2B3	THRAP3	

Table 4. RNA content included in the Agilent SureSelect Cancer Pan Heme RNA panel. The panel provides full coding region coverage of 124 genes relevant to hematologic malignancies for detection of gene fusions.

ABL1	BIRC2	CIITA	DSCAM	FOXR1	KANSL1	MN1	NOTCH1	PML	SEPTIN9	TFG	ZFP36L2
ABL2	BIRC3	COMM3	ELL	FUS	KAT6A	MPO	NPM1	PRDM16	SPI1	TP63	ZNF362
ACTB	BMI1	CREBBP	EP300	GATA2	KDM5A	MSI2	NSD1	PRRC2B	SSBP2	TP73	ZNF384
AFF1	CBFA2T3	CRLF2	ERG	GLIS2	KMT2A	MTCP1	NUP214	RARA	STAG2	TPM3	
AHI1	CCND1	CSF1R	ETS2	H2AX	LMO1	MYB	NUP98	RARG	STAT6	TPM4	
ALK	CCND3	CTCF	ETV6	HNRNPC	LMO2	MYC	NUTM1	RB1	STIL	TYK2	
ATF7IP	CCR6	CUX1	FGFR1	HOXA11	LYN	MYH11	P2RY8	RET	SYK	UBA2	
BCL11B	CD28	DAZAP1	FGFR3	HOXA9	MAL	MYH9	PAX5	RNF213	TAL1	VAV1	
BCL2	CDK6	DDX10	FLT3	IKZF1	MALT1	NFIA	PDGFRA	RUNX1	TBL1XR1	XPO1	
BCL6	CEP43	DDX3X	FNBP1	IRF4	MECOM	NFKB2	PDGFRB	RUNX1T1	TCF3	YPEL5	
BCR	CHD1	DDX6	FOXP1	JAK2	MLL10	NIPBL	PICALM	SEC31A	TCL1A	ZCCHC7	

Table 5. Clinically relevant DNA and RNA targets covered by the Agilent SureSelect Cancer Pan Heme assay. The comprehensive assay supports genomic characterization across hematologic malignancies, such as acute myeloid leukemia (AML), myeloproliferative neoplasms (MPN), myelodysplastic syndromes (MDS), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), multiple myeloma (MM), and non-Hodgkin lymphoma (NHL), enabling precision genomics insights. The assay provides full coding region coverage of target genes. For TERT (orange cell), both the full coding region and promoter region are covered. For IGH (pink cell), specific regions are covered to enable detection of nonchimeric structural rearrangements.

		ABL1	APC	ASXL1	ASXL2	BCOR	CEBPA	CREBBP	DNMT3A
AML	DNA	EZH2	FLT3	IDH1	IDH2	JAK2	KIT	KMT2A	MECOM
		NPM1	PHF6	RUNX1	SF3B1	SRSF2	STAG2	TERT	TP53
		U2AF1	WT1	ZRSR2					
	RNA	ABL1	BCR	CBFB	CREBBP	DEK	FGFR1	KMT2A	MECOM
MPN	DNA	MKL1	MLF1	MYH11	NUP214	PDGFRA	PDGFRB	PML	RARA
		RBM15	RUNX1	RUNX1T1					
		APC	ASXL1	CALR	CBL	EZH2	IDH1	IDH2	IKZF1
	RNA	JAK2	KIT	KMT2C	MPL	NFE2	PPM1D	SF3B1	SH2B3
MDS	DNA	SRSF2	TERT	TET2	TP53	U2AF1			
		ABL1	BCR	FGFR1	PDGFRA	PDGFRB			
		ETV6	EZH2	FLT3	GATA2	IDH1	IDH2	JAK2	MPL
		NPM1	NRAS	PHF6	PPM1D	RUNX1	SETBP1	SF3B1	SRSF2
		STAG2	STAT3	TERT	TET2	TP53	U2AF1	UBA1	WT1
	RNA	ZRSR2							
ALL	DNA	CBFB	CREBBP	DEK	KMT2A	MECOM	MYH11	NUP214	PML
		PRDM16	RARA	RUNX1	RUNX1T1				
		ABL1	CDKN1B	CDKN2A	CDKN2B	CDKN2C	IGH	IKZF1	JAK2
	RNA	MYC	NOTCH1	RB1	TERT	TP53			
CLL	DNA	ABL1	ABL2	BCR	CRLF2	CSF1R	EPOR	ETV6	FGFR1
		JAK2	KMT2A	MYC	NOTCH1	NUP98	PBX1	PDGFRB	RUNX1
		TAL-1	TCF3						
	DNA	ATM	BCL2	BIRC3	BTK	CKDN2A	CKDN2B	NOTCH1	PLCG2
MM	DNA	SF3B1	TERT	TP53					
		ATM	BRAF	CD47	CDKN2C	CHEK2	DIS3	EGR1	EPOR
		FCRL5	GPRC5D	IRF4	KRAS	NRAS	RB1	SLAMF7	STAT3
	RNA	TERT	TNFRSF17	TP53					
NHL	DNA	BIRC3	BRAF	BTK	CREBBP	CXCR4	DNMT3A	EPHA7	EZH2
		IDH2	IGH	KMT2D	MAP2K1	MEK	MYD88	PLCG2	TERT
	RNA	TET2	TNFAIP3	TP53	TRAF2				

Relevant publication

Galbo, P. M., Jr.; Klees, R. F.; Burgher, B.; Miles, K. M.; Morrison, C. M.; Glenn, S. T. A Comprehensive Guide to Achieving New York State Clinical Laboratory Evaluation Program Approval for Next-Generation Sequencing Assays. *J. Mol. Diagn.* 2025, 27 (6), 485–501. DOI: 10.1016/j.jmoldx.2025.02.009.

Ordering information

Product Description	16 Rxns	96 Rxns	96 Rxns Auto
SureSelect Cancer Pan Heme DNA Panel	5280-0071	5280-0072	5280-0094
SureSelect Cancer Pan Heme RNA Panel	5280-0073	5280-0074	5280-0153
SureSelect Cancer Pan Heme Assay with QIAGEN QCI Report	G9516	G9617	
Product Description	32 Rxns	96 Rxns	
Magnis SureSelect Cancer Pan Heme DNA Kit	G9780A	G9780B	
Magnis SureSelect Cancer Pan Heme RNA Kit	G9780C	G9780D	
Magnis SureSelect Cancer Pan Heme Assay with QIAGEN QCI Report	G9518	G9619	

Note: Agilent SureSelect Cancer Pan Heme DNA and RNA panels are compatible with Agilent SureSelect XT HS2 and Agilent SureSelect Max reagents. Panel optimization and analysis pipeline development on the QIAGEN QCI platform were conducted using the SureSelect XT HS2 reagents.

SureSelect Cancer Pan Heme Assay | Agilent

For Research Use Only. Not for use in diagnostic procedures.
PR7003-400

This information is subject to change without notice.

© Agilent Technologies, Inc. 2025
Published in the USA, October 28, 2025
5994-8738EN

